

I/O redirection

● Most of the time, programs display their output (stdout) to
the monitor and take their input (stdin) from the keyboard
● There is also an error stream (stderr) that some programs
take advantage of
● From the command line, you are able to seperately redirect
where a program’s stdin comes from, and/or where its stdout
goes to, and/or where its stderr goes to

Redirecting stdin with <

● If we want a program to read its input from a file instead of
the keyboard, we can use “program < filename”

● The program will read sequentially through the file, treating
whitespace in the file in the exact same way as if the user
had entered it

● Of course, the content of the file needs to be consistent
with what the program expects/can handle

Redirecting stdout with >

● Similarly, we can send a program output to a file instead of
the monitor, e.g. “progname > filename”

● If the file doesn’t exist yet then this will create it, otherwise it
will replace the old version of the file

● Of course, if the program goes into an infinite loop while
producing output then you’re going to run into quota issues...

● Combinations are also possible, e.g. “prog < infile > outfile” to
read from the first file and write to the second

Piping output between programs

● We can use the output from one program as the input to
another using the pipe (vertical bar), e.g. “prog1 | prog2”

● This can also be combined with > and <, e.g.

prog1 < infile | prog2 > outfile

runs prog1 using data from infile, sends its output to prog2
to be used as input there, then prog2’s output goes to
outfile

Redirecting stderr

● The > is used to redirect stdout
● We can instead redirect stderr using 2> or redirect both of

them using &>

prog > file # stdout goes to file, stderr goes to screen

prog 2> file # stderr goes to file, stdout goes to screen

prog > file # both go to file

prog # both go to screen

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

