

Types, checking, compatibility

● Range of types supported, associated syntax, and handling of
type compatibility are some of the most recognized aspects of
any language
● As mentioned earlier:

● Static typing: types fixed prior to execution
● Fixed dynamic typing: types determined during execution, but
cannot be changed once set
● Dynamic typing: types can change over time, are generally
associated with the currently stored value, not explicitly with the
variable/expression

Type conversions

● Type conversion: translating a value of one type into a
“matching” value of another type)e.g. “37” -> 37)
● Implicit conversions: performed automatically, require no explicit

instruction from programmer, e.g. float x = 3; // 3 -> 3.0

● Explicit conversions: programmer includes an instruction or directive
stating they want a converion to take place, e.g. float x = (int)(3);

● For type conversion to take place, compiler/interpretter must
know how to perform that conversion (some such conversions
typically built-in, language may allow programmer to specify
how others are to be handled)

Widening, narrowing conversions

● Different types, while abstractly compatible, might support
different ranges of values, e.g. int a; vs long b; and require
different amounts of memory to store

● Widening conversions: converting from a data type with a
smaller range to a type with a larger range: must decide how
to “fill in” the extra bits of storage, e.g. b = a;

● Narrowing conversions: converting from a data type with a
wider range to a type with a larger range: must decide how to
truncate the excess data, e.g. a = b;

Conversion warnings and errors

● Compiler/interpretters usually warn about narrowing
conversions (obvious possibility for loss of data), but not
about widening conversions

● Some narrowing conversions not obvious, e.g. suppose we
had 32 bit floats and 32 bit ints
int i; // can hold ints in range +/-2billion(ish)

float f; // can hold floats in range +/-3x10^38(ish)

f = i; // actually a narrowing conversion

// f uses some bits for precision, some for exponent

// whereas i can actually have 32 bits of precision

Type compatibility

● Checking if the operands for an operation have acceptable
types for the operation, possibly allowing implicit conversions
to take place first, e.g.

 float x; int y;

 x = 5 * y;

● Need to check if 5 and y are compatible with *
● Then need to check if result and x are compatible with =

Static vs dynamic type checking
● Static checking takes place at compile time

Really only possible where types are statically bound
● Dynamic checking takes place at run time
● Dynamic more flexible, but often requires more specific

programmer involvement, results in slower execution
● Languages are strongly typed if all type checking can be done

statically, weakly typed otherwise (most languages are weakly
typed, to greater/lesser degrees)

● Features like type casting, void pointers, and unions often allow
programmers to bypass regular type-checking processes

Name vs structural type checking

● Name checking: two items have the same data type if the
names of their types are identical

● Structural checking: simply need the underlying content to
be of the same types
struct Foo { int i; float f; } x; // var x of type Foo

struct Blah { int a; float b; } y; // var y of type Blah

● x and y are type compatible under structural checking, but
not under name checking

Pros/cons of named type checking

● Name-based type checking gives developers less flexibility in
terms of implicit type conversions/compatibility

● Name-based type checking allows developers to use the name as
a means of error detection, e.g.
// implement types for temperatures and speeds as floats

typedef float Temperature;

typedef float Speed;

Speed s;

Temperature t;

s = t; // name-based checking warns us that we’re mixing types

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

