

Smart pointers

● For pointer-based languages, smart pointers are meant to
bridge the gap between pointers and references
● Provide safeguards against wild pointers, invalid pointers,
dangling pointers, and memory leaks
● Usually implemented as a class (where supported), which
provides methods or operators for safe/controlled access to
the dynamically allocated item

Smart pointer use

● User declares a smart pointer of desired resource type
● User requests new instance of resource through the smart

pointer
● User requests access to resource (methods/fields) through the

smart pointer
● User can copy smart pointers (e.g. ptrA = ptrB)
● Resource de-allocation automatically handled by smart pointer

Smart pointer data content

● Smart pointer maintains internal pointer to the actual
allocated resource, user never gets direct access

● Smart pointer also maintains internal pointer to an
administrative object that tracks/controls access to the
allocated resource

● The admin object is allocated when the resource is first
allocated, and maintains a reference count (how many
smart pointers have access to the resource instance)

Smart pointer operations

● The copy operation (e.g. ptrA = ptrB) for smart pointers copies both internal
pointers (to the resource and the admin object) after decrementing the reference
count for the resource ptrA used to point to, and incrementing the reference count
for the resource ptrB points to

● If smart pointer variable goes out of scope the relevant reference count is also
decremented

● If reference count ever hits 0 then the resource instance is deleted, internal
pointer to it nullified

● Access operations (e.g. -> and *) are overloaded to check with the admin object
to make sure the resource instance still exists before redirecting to the requested
resource field/method

Safeguards provided

● Programmer doesn’t create any wild/invalid pointers
because all “dumb” pointer operations handled internally
by the smart pointer class

● Dangling pointers not an issue since resource kept alive as
long as anything still refers to it

● Memory leaks not an issue since resource automatically
deallocated as soon as last reference ends

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

