

Selection in lisp

● Lisp provides many functions to select actions based on
true/false conditions
● if is used for if/else functionality
● cond is used for chains of if/else if/else if/.../else
● case is used much like a C switch statement
● typecase is like case, but based on an item’s data type
● when allows you to do multiple things if a condition is true
● unless allows you to do multiple things if a condition is false

If for selection in lisp

● The if function syntax is (if condition trueval falseval)
● If the condition evaluates to true then the trueval is

returned, otherwise the falseval is returned
● The falseval defaults to nil if omitted
● Any value or function call is valid for the trueval/falseval
● Example: if x is a number return its square root, otherwise

return the string “not a number”:
● (if (numberp x) (sqrt x) “not a number”)

Nested if’s

● Suppose we wanted functionality like:
if x is a number

 if x < 0 return sqrt(-x)

 else return sqrt(x)

else if x is a string return length(x)

 else return nil

● One solution:
(if (numberp x)

 (if (< 0 x) (sqrt (- x)) (sqrt x))

 (if (string x) (length x) nil))

Sequences of if/else-ifs

● Suppose we want functionality like
If (a) w

Else if (b) x

Else if (c) y

Else z

● Could use nested if’s:
(if a w

 (if b x

 (if c y z)))

Cond: alternative to nested if’s

● Cond is meant as an alternative to the nested-if syntax
● You list a series of pairs, for each pair there is a condition and

then the value to return if the condition is true
● The cond returns the result of the first match
(cond

 (a w)

 (b x)

 (c y)

 (t z))

● Note the t as the final condition acts like a final else

Cond example

; sample cond layout, note the bracketting

(cond

 ((not (numberp x)) x) ; if x isn’t a number return x

 ((< 0 x) (* x 10)) ; else if x<0 return 10* x

 (t (x – 5))) ; else return x-5

Compound expressions

● Boolean expressions and, or, not supported, e.g.
● (and x y z)
● (or a b c d e f)
● (not x)
● (and (not (or a b c)) (or x y z))

When blocks

● When allows you to test a condition and do multiple things
if it is true, when’s return value is the last return value in
the block

(when (< x 0)

 (format t “~A negative, replacing with abs value~%”)

 (setf x (- x)))

Unless blocks

● Unless allows you to perform multiple actions if a condition
is false
(unless (< x 0)

 (format t “setting y to root x~”)

 (setf y (sqrt x)))

Case statements

● Act much like a switch in C/C++
(case x

 (0 (format t “x is 0”))

 (“foo” (format t “x is foo”))

 (otherwise (format t “x is something else”)))

● Basically like a cond where each test condition is “does x
equal this?”

Typecase statements

● Like case, but works on type of item instead of its value
(typecase x

 (string (format t “x is a string”))

 (number (format t “x is a number))

 (t (format t “x is something else”)))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

