

Parameters and communication
● Need some way to communicate between caller and callee (registers,
memory, parameters)
● Call stack typical approach to support generalized recursion
● Wide variety of parameter passing mechanisms (by value, by reference,
by value-return, by result, by name) and styles (positional vs keyword,
optional parameters, variadic, etc)
● Overloading functions: using a single function name to represent
different functions, identified by unique parameter lists
● Generic functions: subset of parameter types are not specified in
function skeleton/template, are filled in by compiler based on actual
parameter lists

Passing mechanisms

● By value (make copy, on stack or in heap with reference)
● By reference (implications for speed, memory, side effects)
● By value-return (copy to, copy back)
● By result (passing a variable to be “filled in”, either using

reference or copying to stack then to target variable)
● By name (pass a name to callee, callee uses whichever

variable is in most local scope with that name)

Parameter options

● Optional parameters (default values?), e.g. C++ or lisp
● Keyword vs positional parameters, e.g. lisp
● Variadic functions: arbitrary number of parameters, we’ve

seen in lisp, can be done with macros in C or templates in
C++ (will cover in the slides/video for lab 9)

Overloading functions

● Using the same name for a variety of functions, differentiated
by parameter lists

● Compiler needs to be able to tell, from the actual parameters
passed, which specific callee you wanted invoked

● Should this be checked at compile time, or run time?
● Implicit type conversion rules and optional parameters add

complexity

Generic (e.g. templated) functions

● Subset of formal parameters are not given a type, function
definition treated as a skeleton or template

● Compiler/interpretter examines actual calls to function to
identify type used, compiler/intepretter generates full
definition of callee based on those types

● Potential issues with seperate compilation (object file with
function implementation may be compiled without
knowledge of the calls from object files to be linked later)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

