Parameters and communication

e (registers,
memory, parameters)
* Call stack typical approach to support generalized recursion

* Wide variety of parameter passing mechanisms (by value, by reference,
by value-return, by result, by name) and styles (positional vs keyword,
optional parameters, variadic, etc)

* Overloading functions: using a single function name to represent
different functions, identified by unique parameter lists

* Generic functions: subset of parameter types are not specified in
function skeleton/template, are filled in by compiler based on actual

parameter lists



Passing mechanisms

By value (make copy, on stack or in heap with reference)

By reference (implications for speed, memory, side effects)
By value-return (copy to, copy back)

By result (passing a variable to be “filled in”, either using
reference or copying to stack then to target variable)

By name (pass a name to callee, callee uses whichever
variable is in most local scope with that name)



Parameter options

* Optional parameters (default values?), e.g. C++ or lisp
* Keyword vs positional parameters, e.g. lisp

* Variadic functions: arbitrary number of parameters, we'’ve
seen In lisp, can be done with macros in C or templates Iin
C++ (will cover in the slides/video for lab 9)



Overloading functions

* Using the same name for a variety of functions, differentiated
by parameter lists

 Compiler needs to be able to tell, from the actual parameters
passed, which specific callee you wanted invoked

* Should this be checked at compile time, or run time?

* Implicit type conversion rules and optional parameters add
complexity



Generic (e.g. templated) functions

* Subset of formal parameters are not given a type, function
definition treated as a skeleton or template

 Compiler/interpretter examines actual calls to function to
identify type used, compiler/intepretter generates full
definition of callee based on those types

* Potential issues with seperate compilation (object file with
function implementation may be compiled without
knowledge of the calls from object files to be linked later)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

