

Memory allocation, release

● Given our layout/admin data for arenas, heaps, chunks, we
need data structures and algorithms to control
allocation/release of chunks
● Tries to balance need to minimize memory fragmentation
against need to maximize runtime efficiency
● Each arena divides the chunks in its heap(s) into 4(5)
categories based on size, different data structures for each

Chunk categories

● Fast: set of linked lists of small chunks of fixed size (e.g. 32-byte
chunks, 64-byte chunks, etc), with inserts/removes from ends of list

● Unsorted: list of recently-release chunks, not yet put in appropriate
other category. Makes release really quick, just add to unsorted
list, moves to “right” category later

● Small: set of bins containing chunks of equal sizes (e.g. search tree
whose nodes are doubly-linked lists containing chunks of size N),
adjacent chunks can be coalesced into larger chunk and put in
other bin

Chunk categories (cont.)

● Large: like small category, except chunks within a list fall into a size
range (e.g. 4k-8k) instead of a fixed size

When handling a request, must search the linked list for that range
to find a big enough chunk for the request, and maybe split off the
unused part as a new smaller chunk

● Memory mapped: special case for really big request, actually
passes request off to OS to be handled there

● Cached: each thread can be given a fixed sized cache of chunks
that it can use without going to the general memory pool

Allocate algorithm

● First, see if a suitable chunk is in the cache (use it if so)
● If it’s a really big request, use mmap (memory mapping)
● Check the fastbin, use if available (might top up cache)
● Check the small bins, use if available (might top up cache)
● Go through unsorted, move them to small/large, coalesce where appropriate,

if you find a good chunk then use it
● Go through large bins, use if available (and split off unused)
● Go through fastbins, coalese where possible and go back to unsorted
● If we get here we need to split a new chunk off the top chunk

Free algorithm

● Put in cache if space available
● If small enough, put in fastbin
● If mmap’d then unmap it
● If adjacent to another free chunk coalesce them
● If it’s the new top then update top, otherwise put in unsorted
● Note how structure of free chunks (with flags for “is prev free?”

and their sizes stored at both ends) allows rapid coalescing of
adjacent chunks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

