

Let over lambda (lol)

● Let-over-lambda refers to the having a let block whose
return value is a lambda function
● Even outside the let block, the returned lambda function can
access/update the block’s variables, even across multiple
calls to the lambda function
● The block’s variables persist in memory as long as the
lambda function is still accessible somewhere
● Effectively creates a set of hidden variables shared across
calls to the lambda function, acting much like the fields of a
class plus an access method

Lol example

● Have a let block (with local variables) return a lambda function,
store that in a variable, f – the lambda function increments and
displays the let block variable

(defvar f

 (let ((x 1))

 (lambda () (setf x (+ x 1)) (format t “x is ~A~%” x)))

● Call the function repeately through f
(funcall f)

X is 2

(funcall f)

X is 3

How/why it works

● All lists in lisp are dynamically allocated in the heap, and
pointers are used to keep track of them

● A list won’t be deallocated until there are no more pointers to it
(or to elements in it), then lisp automatically deletes it

● The list of local variables in a let block is such a dynamically
allocated list, and if the lambda function uses those variables
then it has pointers into the list

● As long as the lambda function still exists, its pointers still
exist, so the let block’s local variable list is kept alive
someplace in the heap

More useful lambdas with lol

● Suppose we add parameters to the lambda function that
allow the user to specify different things they want done to
the ‘hidden’ variables

● Perhaps one command parameter and an option
parameter

● The user can call the lambda function repeatedly, having it
take different actions on the data over time, e.g. increment,
decrement, print, return, etc

Simple example with circles

● Let block variables store the radius of a circle, default value 1,
and the lambda function can update it or print it (default action)
(defvar f (let ((r 1))

 (lambda (cmd &optional (arg 1))

 (cond ((equal cmd ‘set) (setf r arg))

 (t (format t “r is ~A~%” r))))))

(funcall f ‘set 5)

(funcall f ‘print)

r is 5

Combine lol with closures

● Now suppose we had a function, builder, containing the let
block from the previous slide and returning its lambda

● The function could take a set of parameters that it used to
initialize the let block variables and to customize the lambda
function that would be returned, e.g.
(defun builder (initialRval areFloatsAllowed)

 ..setup code and a new fancier let block here..)

(defvar f (builder 23.5 t))

Our function acts like a constructor

● Every call to a function has its own local variable space
● so every call to builder has its own local variable space
(defvar f (builder 23.5 t))

(defvar g (builder 5 nil))

● F works on the local variable list allocated for the first call,
while g works on the local variable list for the second call

● They’re completely independent ... builder is acting much
like a constructor in OO languages

Circle example

● Let’s have our lambda function maintain/process data
about a circle: the x,y coordinates of the centre and the
radius (we’ll call the construction function buildCircle)

● The user can give the lambda function commands to print
the info, update the coordinates, update the radius, or
return the area
(defvar c1 (buildCircle 5 3 24)) ; x=5, y=3, r=24

(defvar c2 (buildCircle 0 0 1)) ; x=0, y=0, r=1

(funcall c1 ‘print)

(5,3):24

buildCircle “constructor”

(defun buildCircle (&optional (xInit 0) (yInit 0) (rInit 1))

 (let ; start with valid default values

 ((x 0) (y 0) (r 1))

 ; update from parameters if they are valid

 (if (realp xInit) (setf x xInit))

 (if (realp yInit) (setf y yInit))

 (if (and (realp rInit) (> rInit 0)) (setf r rInit))

 ; lambda function expects a command and possibly an arg

 (lambda (cmd &optional (arg nil))

 (cond ; check/process each command type

The lambda function

 ; check for/process print commands

 ((equalp cmd ‘print) (format t “(~A,~A):~A~%” x y r))

 ; check for/process area commands, return pi r^2

 ((equalp cmd ‘area) (* 3.14 r r))

 ; check for/process set-radius commands

 ((equalp cmd ‘radius)

 (if (and (realp arg) (> arg 0)) (setf r arg)

 (format t “Error: invalid radius ~A~%” arg)))

lambda function cont.

 ; check for/process set-coords commands

 ((equalp cmd ‘coords)

 ; need to make sure arg is a list of two reals

 (if (and (listp arg) (= (length arg) 2)

 (realp (car arg)) (realp (cadr arg)))

 ; arg looks ok, set x and y

 (setf x (car arg)) (setf y (cadr arg))

 (format t “Error: invalid coords ~A~%” arg)))

 ; anything else is a bad command

 (t (format t “bad command ~A~%” cmd))))); end of buildCircle

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

