

The forms of a function

● A function could be a compiled function, an actual lambda
expression, or a function built by defun, label, or a call to
lambda

● Some built-in constructs (let, cond, etc) provided through
macros will also need to be addressed

● (functionp f) returns t iff f is a function
● (fboundp f) returns t iff f was created as a defvar
● (function f) or, equivalently, #’f , returns the

implementation of a function

The forms returned by (function f)

● We can test if f is a compiled function using
(eq (type-of (function f)) ‘COMPILED_FUNCTION)

● Otherwise, functions will have one of four forms:
● If defined by defun:

(‘lambda-block name paramlist ...body...)

● If an actual lambda expression: \

(‘lambda paramlist ...body...)

● If defined by lambda:

(‘lambda-closure env1 env2 env3 paramlist ...body...)

● If defined by labels:

(‘lambda-block-closure env1 env2 env3 name paramlist body)

Complication: function operation

● function is an operator, not a typical function
● For defun and labels, (function f) only works if f is the

actual name of the function (not a variable holding the
name) and f is actually in scope at the point of call

● Suppose we want to create a function called getparams,
and have it look up the parameter list for a function, e.g.
(getparams foo)

● getparams can’t simply call function on its parameter
(won’t work for defun or labels)

Solution: getparams macro

● We could force the user to make calls like

 (getparams (function foo)) but that’s clunky, error prone
● use a getparams macro: it calls function and passes result to

a secondary function to extract the actual parameter list
(extractparams (function func))))

● extractparams works with the actual func implementation,
user still makes their call as (getparams foo)

extractparams

Source: (getparams f), macro call: (extractparams (function f))

(defun extractparams (f)

(if (functionp f) ; makes sure param was ok

 (let ((ftype nil)) ; will store function type as a string

 ; lambda, lambda-block, lambda-closure, lambda-block-closure

 ; or, for compiled functions, set to compiled

 (if (listp f) (setf ftype (symbol-name (car f)))

 (if (eq (type-of f) ‘COMPILED_FUNCTION) “COMPILED”))

Now figure out param list

● The ftype allows us to figure out where to find the param list
(‘error for bad function form or ‘compiled for compiled func)
(cond

 ((string= ftype “LAMBDA”) (nth f 1))

 ((string= ftype “LAMBDA-BLOCK”) (nth f 2))

 ((string= ftype “LAMBDA-BLOCK-CLOSURE”) (nth f 5))

 ((string= ftype “LAMBDA-CLOSURE”) (nth f 4))

 ((string= ftype “COMPILED”) ‘compiled)

 (t ‘error)))))

Handling built-ins

● This still doesn’t help if user tries to call on something like let
or cond, anything built-in or provided by a macro

● Perhaps one could build up a hash-table of such values to
be accepted, e.g.
● for ‘let it could return the parameter list as
(varpairs &rest statements)

● For ‘defun it could return the parameter list as
(fname paramlist &rest statements)

● etc

Arity of functions

● “arity” of a function is the number of parameters it expects
(a little complicated in lisp, where there can be required
parameters, optional parameters, and &rest)

● we want a lookupArity, to find the arity of a function
● use a lookupArity macro with an extract Arity function
● Programmer writes (lookupArity f), macro transforms that

to a call like (extractArity (function f))
● extractArity uses extractparams to get f’s param list

extractArity

● Suppose we now have f’s param list
● It may/may not contain some mandatory parameters, some

optional, and the &rest
● Perhaps we have extractArity return 3 values: the number of

mandatory parameters, the number of optional parameters,
and either t/nil to indicate &rest supported/not

● Remember (multiple-value-bind x y z) allows us to return
multiple values, and (nth-value 1) or (nth-value 2) allows the
caller to capture y or z

Counting expected params

● Our param list can look something like
(a1 a2 a3 &optional (x1 v1) (x2 v2) &rest r)

● Perhaps we divide into three smaller lists and count
elements in each:
● List of items after &rest (if any)

● List of items after &optional once &rest content removed

● List of items after the &optional/&rest content removed

● Then we simply count/return the sizes of the three lists

The three sublists

● Use (position e L) and (subseq S i j) to get the sublists
(let ((mand params) (opt params) (rest nil))

; check for &rest first

; if found chop it out of param list

(if (member ‘&rest params) (block ‘foundRest

 (setf rest t)

 (setf opt (subseq params 0 (position ‘&rest params)))))

Sublists continued

; check for &optional next

(if (member ‘&optional opt) (block ‘foundOptional

 ; count the elements after &optional

 (setf opt (subseq opt (position ‘&optional opt)

 (length opt)))

 (setf opt (- (length opt) 1))

 ; remove everything from &optional to end of list

 (setf mand

 (subseq params 0 (position ‘&optional params)))))

; count the mandatory args (whatever’s left)

(setf mand (length mand))

Parsing lisp in lisp - revisited

● Look at how a lisp program can interactively examine its
own content/structure
● 1st, creating a set of macros/functions to look up the
parameter list expected by a function (regardless of whether
the function was a lambda, a label, a defun, etc)
● 2nd, creating macros/functions to count the number of
mandatory, optional, &rest arguments a function supports
● We need to understand the structure of each different form
of function and how lisp can find/access it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

