
  

macros
● Macros in a general: code elements allowing us to define 
expansions to an existing language
● Typically evaluated as a pre-processing step by the 
compiler/interpretter evaluating HLL source code
● Different languages provide very different macro capabilities

● Some simply use macros to create aliases/shortcuts for other 
commands
● Some allow simple rewrites/substitution of command syntax 
(like C #defines) or template-based code specification (like C++ 
templates)
● Some provide full programmatic code rewrites (e.g. lisp)



  

Lisp macros

● Lisp macros look somewhat like functions but run in a 
preprocessing step, before execution of the lisp code

● Allow programmer to specify new syntax to be used in the 
source code, and detail how to translate that new syntax into 
regular lisp code

● During processing, where the compiler sees the new syntax in 
use it runs the macro to translate the new syntax

● After all macros have completed, the rewritten lisp code can be 
run



  

Simple example: nullify

● I want to be able to use syntax (nullify x) in my code to set 
a variable’s value to nil, e.g.. if I write (nullify foo) then 
during pre-processing it should get translated into (setf foo 
nil)

● I define a macro for nullify, specifying it takes one 
parameter and specifying what the rewritten code should 
look like, e.g.
(defmacro nullify (varname) `(setf ,varname nil))

● We’ll discuss the relevance of ` and , shortly



  

Nullify continued

● Suppose my source code looks like this
(defmacro nullify (varname) `(setf ,varname nil))

(defvar foo 3)

(nullify foo)

● Then after preprocessing, just before execution, it has 
been transformed into this
(defvar foo 3)

(setf foo nil)



  

Why not just call a function

● Why not just use a function called nullify? e.g.
(defun nullify (varname) (setf varname nil))

(nullify foo)

● Two key reasons:
● a) pass by value, calling (nullify foo) wouldn’t change foo
● b) the source code produced by the macro doesn’t need a 

function call during execution, so is more efficient at run time



  

So why use functions at all?

● Having a macro rewrite our source code before execution 
introduces an extra layer of indirection between the 
developer and the code that actually runs

● The rewritten code is what gets executed, so all the lisp 
error messages are based on what the code looks like 
after the macros finish ... not what the source code looks 
like to the developer

● This can make debugging very tricky, especially since 
macros can use other macros and can even be recursive



  

When should I use macros?

● When the use of a macro can significantly improve the 
readability of your code by providing a simple syntax for 
something the developer does frequently

● When you need to improve run time performance (avoiding 
 runtime function calls)

● When you need to accomplish something that cannot be 
easily accomplished through function calls



  

So why the comma and backtic?

● Macros process our source code, translate it into other code
● For the macro to use variables/parameters, it needs a way to 

tell the preprocessor when to use literal text and when to embed 
a variable’s value: when does it mean the word foo vs when 
does it mean use the value stored in foo?

● The backtic ` means whatever comes next is the literal text to 
generate, e.g. `(blah blah blah) would actually generate 
source code (blah blah blah)

● The comma is used inside a backtic to say “use the actual 
variable value here”, e.g. ,x means use the value of x



  

Nullify revisited

● Our nullify example was
(defmacro nullify (varname) `(setf ,varname))

(nullify foo)

● Here the symbol foo is the value stored in the macro 
parameter varname, and gets used in producing the 
rewritten source code

● we can see the macro uses (setf ....) literally but 
substitutes the value in varname (i.e. foo), producing 
(setf foo)



  

Fancier nullify

● Our macros can generate code that is as simple or as 
complex as desired

● The generated code could be a statement or block that 
includes error checking, e.g. check the var exists:
(defmacro (varname)

   `(if (boundp ,varname) (setf ,varname nil)))

(nullify foo)

● Would rewrite as
(if (boundp foo) (setf foo nil))



  

Seeing our expanded macro

● Sometimes in debugging it helps to see what code a 
macro call is generating, macroexpand-1 shows us this
(macroexpand-1 ‘(nullify foo))

● Would return the list
(if (boundp foo) (setf foo nil))

● Unfortunately, if used on recursive macros it only shows 
the first layer of expansion



  

Local variables and gensym

● Suppose I try the following swap macro using a local variable 
tmp
(defmacro swap (a b)

      (let ((tmp ,a)) (setf ,a ,b) (setf ,b tmp)))

● Then (swap x y) would translate into
(let ((tmp x)) (setf x y) (setf y tmp))

● That looks good, but what if I already had a tmp variable and 
tried (swap tmp z), which would translate to
(let ((tmp tmp)) (setf tmp z) (setf tmp tmp))



  

gensym: unique identifiers

● No matter what name we pick for the macro’s local 
variable, there is a chance it will clash with an existing 
variable name in the user program

● (gensym) is a function that returns a symbol guaranteed 
not to clash with anything else in the program

● We’ll have the macro call gensym, store the symbol it 
gives back in a local variable, then use that variable as 
part of our code rewrite



  

Swap using gensym

● We introduce a let block in the macro to store the name 
gensym creates for us, then embed the stored name into the 
generated code:
(defmacro swap (a b)

   (let ((tmp (gensym)))

      `(let ((,tmp ,a)) (setf ,a ,b) (setf ,b ,tmp))))

● for (swap x y) suppose the unique symbol name created by 
gensym was (for example) G123, the result would be:
(let ((G123 x)) (setf x y) (setf y G123))



  

Embed content of a list with ,@

● Suppose I wanted a macro that could dump the contents of a 
list into an expression

● e.g. (really simple example) I want a “plus” macro so that

 (plus ‘(10 20 30)) gets rewritten as (+ 10 20 30)
● If I try (defmacro plus (L) `(+ ,L)) 
● It would still just produce (+ ‘(10 20 30))
● We can use ,@ instead of , to produce the desired effect, e.g.
(defmacro plus (L) `(+ ,@L))



  

Recursive macros with &rest

● We can use &rest in the macro parameter list to specify a 
variable number of parameters

● The macros can also be made recursive
● Example: multi-parameter AND implemented using nested if 

statements:
● Translate (and w) into w
● Translate (and w x) into (if (w) x)
● Translate (and w x y) into (if (w) (if (x) y))
● Translate (and w x y z) into (if (w) (if (x) (if (y) z)))



  

Implementation of and

(defmacro AND (&rest args)

   (cond

      ; translate (AND) to just t

      ((null args) `t)

      ; translate (AND x) to just x

      ((null (cdr args)) ,(car args))

      ; general case (AND x ...more...) translates to

      ;    (if (x) ...result of recursive macro call...)

      (t `(if (,(car args)) (AND ,@(cdr args))))))



  

Most lisp syntax actually macros

● Most of the lisp features we use are actually macros that 
translate our code into core lisp elements

● This includes functions like and, or, the various forms of 
loops, cases, cond, blocks and let blocks, etc etc etc

● By incrementally adding macros we expand the syntax 
available to the developer without increasing the 
complexity of the underlying language

● You can create your own flavour of lisp syntax by building 
up your own macro suite


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

