

Iteration/loops

● variety of iteration constructs provided with varying degrees
of complexity, we’ll only touch on a subset
● iteration inherently impure from a functional programming
point of view
● could be implemented purely “under the hood” using tail
recursive techniques
● will consider implementations and tradeoffs later

dolist

● Simple construct for applying an action to each element of a
list
(dolist (varName theList) action_on_varName)

● e.g. assuming our list is L:
(dolist (e L) (format t “next element is ~A~%” e))

● It’s using e as a local variable name to refer to the current
element during the iteration

● The “action” could of course be any valid lisp statement, e.g.
a function call, a block, a let block, etc

dotimes

● We specify a llocal counter variable, the number of times
to repeat an action, what to return when finished, and the
action to be performed
(dotimes (x N (foo x)) someAction)

● The local counter, x, goes from 0 to N-1, performing the
action on each x value, then at the end it returns (foo x)
(dotimes (x 4 (* x x)) (format t “~A” x))

prints 0..3 then returns 16

do

● The do construct is structured but powerful: we specify
three key parts:
● list of local variable definitions, each of which specifies

the name, initial value, and how to update it each pass
● list of the stopping condition then any actions to take

and value to return once the stopping condition is met
● anything left is the body of the loop (sequence of

statements to execute each pass through the loop)

do example

● Example: start with x=5, y=100, keep doubling x and
incrementing y until x>y, and at each step we’ll print both.
When it stops, print x*y then return x+y.
(do ; first, a list of local variable settings

 ((x 5 (* x 2)) (y 100 (+ y 1)))

 ; second, a list of the stop condition and any actions,

 ; the last action determines the return value

 ((> x y) (format t “~A” (* x y)) (+ x y))

 ; and remaining statements are the body of the loop

 (format t “~A, ~A~%” x y))

loop

● Loop: very flexible form, can specify a loop name, set of
local variable specs, and a set of actions on the vars

● “for” is used within the loop to describe how a local
variable is initialized/updated, e.g. for x in ‘(10 20 30 40),
or for y upfrom 2 below 12 by 3 ; vals 2,5,8,11

(loop named Foo

 for x in ‘(10 20 30 40 50)

 for count from 5 ; increments count by 1 each time

 While (and (/= 30 x) (< count 7))

 do (...whatever with the current value of x,count))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

