

hashes

● Hashes in lisp are basically a lookup table of key-value pairs
● can create/destroy tables
● can add/remove key/value pairs
● can check if key current present in table
● can update value associated with a key
● can look up value associated with a key
● can iterate through the pairs based on keys
● can collect list of values and/or list of keys
● can run a function on every key/value pair

Basic hash table functions
● create/return an empty table, here storing in var myTable
(setf myTable (make-hash-table))

● Look up size of table (number of pairs)
(hash-table-count myTable)

● add/update key value pair, k is my key, v is new value
(setf (gethash k myTable) v)

● remove key/value pair
(remhash k myTable)

● lookup value associated with key (nil if key not present)
(gethash k myTable)

What if nil values are ok?

● (setf result (gethash k myTable))

● If result is nil we don’t know if value was really nil, or
whether there is no key-value pair for k

● gethash actually returns second value, t if found, nil if not,
(capture using nth-value or multiple-value-bind)

(multiple-value-bind (v status) (gethash k myTable)

 (if (status)

 (format t “found value ~A~%” v)

 (format t “no such key/value pair present~%”)))

Iterating through keys

● Special syntax set up through macros
(loop for k being the hash-keys of myTable do

; ... body of your loop, doing whatever with k, e.g.

(format t “next pair is ~A:~A~%” k (gethash k myTable)))

● Yes, that really is the actual syntax for the loop!

(assuming you want to use k as the variable for the next key and
myTable is the variable containing your hash table)

Collecting lists of keys, values, or both

● Again, special syntax set up through macros
● The following returns a list of the keys of myTable
(loop for key being the hash-keys of myTable collect key)

● Or, to get a list of the values
(loop for key being the hash-keys of myTable collect

 (gethash key myTable))

● Or, to get a list of key/value pairs
(loop for key being the hash-keys of myTable collect

 (list key (gethash key myTable)))

Running a function on each pair

● The function we want to run, e.g. myFunction, needs to
expect two parameters, the key and the value

● It will get run on every pair, but the order of pairs is not
easily predictable

● We’ll pass the function name and the table as parameters
to maphash (another ‘higher order’ function), e.g.
(maphash ‘myFunction myTable)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

