

File handling and pipes

● Lisp provides a number of file handling functions and
macros, with the usual “open file, access, close file” approach
● We’ll look at a couple of basic examples, there are many
other ways to attack file handling
● We’ll also look at handling pipes, allowing our programs to
direct output to other programs/commands or pull input from
other programs/commands

File info functions

● (probe-file fname) – return t iff the file exists
● (file-author fname) – return name of file author/owner
● (file-write-date fname) – look up modification date
● (file-namestring fname) – extract just the name (useful where

fname includes the path)
● (directory-namestring fname) – extract just the path (omit the

filename)
● (delete-file fname) – delete the file

with-open-file

● Function to deal with file processing
● expects first parameter to be a pair:

 (streamname filename)
● remaining parameters are the actions to be performed

on the file
● It will open the file (read mode by default), after which you

use the stream name to access
● file closes at end of with-open-file

The stream setup

● (streamname filename ...options...)
● Opens the file and associates the strem
● Can accept a variety of optional param (often pairs) eg:

● :direction :output
● :if-exists :overwrite
● :if-does-not-exist :create

i/o with the open stream

● To read/return a line from an input stream (nil at eof)
(read-line streamname nil)

● To write to an open output stream
(format streamname “blah blah blah”)

● To get the size of a file
(file-length streamname)

● To get current position in file (bytes from start)
(file-position streamname)

Output example

● Open a file and write something to it
(with-open-file (mystream “somefile” :direction :output)

 (format mystream “blah blah blah”))

● Open a file and read a line from it, store in global variable
(defvar content nil)

(with-open-file (s “afile”)

 (setf content (read-line s nil)))

(format t “Content read was ~A~%” content)

Loop to read entire file (by lines)

(with-open-file (s somefilename)

 (do

 ; loop var nextline;init value;update statement

 ((nextline (read-line s nil) (read-line s nil)))

 ; stopping condition/action

 ((null nextline) (format t “All done!~%”))

 ; loop body, just displays current line

 (format t “Just read: ~A~%” nextline)

))

Open and pipes

● We can use open to create pipes through which we can
read data produced by other programs or write data that
other programs can use as input

● Open returns the opened pipe, we close later with close
● Example: send our output to be read by another program
(defvar mypipe (open “| apath/aprog” :direction :output))

(format pipe “this is what I am sending through the pipe”)

(close pipe)

Example: reading from a pipe

● Run another program and read the first line of output it
produces, store in a variable named result
(defvar p (open “| anotherprog))

(setf result (read-line p nil))

(close p)

Example: read all output from ls

(let ((mypipe (open “| ls”)))

 (do

 ; local vars value/init/update

 ((nextline (read-line mypipe nil) (read-line mypipe nil)))

 ; stopping condition/action

 ((null nextline) (close pipe))

 ; body (just printing what was read)

 (format t “just read: ~A~%” nextline)))

unwind-protect

● Sometimes there is an action we want to guarantee takes
place at the end of a sequence, even if earlier parts fail
(e.g. we always want to close the pipes we open)

● Unwind-protect takes a sequence of actions as its
parameters, and if any fail it still continues with the rest
(unwind-protect

 (let ((p (open “| somecmd”)))

 use pipe, but stuff might fail...

 (close-pipe p)))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

