

Blocks, let, let* blocks

● Sometimes we want to run a set of functions in sequence
(e.g. prompt then read)
● can be done at function level (using sequence of statements
as body of function)
● can also be done anywhere a lisp function call is valid, using
either block, let, or let*
● block permits a list of statements, while let and let* also
allow declaration and use of local variables
● return value from block/let/let* is the return value of the last
statement run

block

● Using block: first argument is a symbol that
identifies/names the block (for use with goto’s later), the
remaining arguments are statements to run, e.g.

; a block to prompt the user

; then read and return their response

(block

 PromptNRead ; our symbol/identifier for the block

 (format t “enter something: ”)

 (read)) ; returns the result of the last action

Blocks fit anywhere

● Can be placed anywhere a lisp statement works:
(if ; a block returning the condition to check

 (block ; to return t iff they enter a number

 GetAndCheckNum

 (format t “enter a number”)

 (numberp (read)))

 ; now the t/f parts of the if

 (format t “Well done!”)

 (format t “That was not a number”))

Let blocks: local variables

● Act like blocks, but no name/identifier needed, instead declare
a list of pairs specifying local variables/values
(let

 ((x 5) (y “foo”)) ; list of local vars/values

 (format t “Enter two items”)

 (setf x (read)) ; set local x to first thing read

 (setf y (read)) ; set local y to second thing read

 (list x y)) ; returns a list of the two values

Possible complication

● Local vars can be initialized by function calls, but no
guarantee what order they’ll run in, e.g.
(let ((a (read)) (b (read)))

 (format t “~A ~A~%” a b))

● Suppose user enters 10 and 20,
● there is no way of predicting which winds up in a and

which winds up in b

let* guarantees order of evaluation

● let* acts like let, except initializes local vars in order given
(let* ((a (read)) (b (read)))

 (format t “~A ~A~%” a b))

● Guaranteed to read into a first, b second
● Useful when you want to initialize one local variable from

another, e.g.
(let* ((x (read)) (b (if (numberp x) (* x x) 0)))

....

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

