

Theory of programming languages

● Programming languages provide us with a way of expressing
solutions to problems
● The nature and features of the language shape the kinds of
solutions we can express, and how easily
● Learning and using very different styles of language helps us spot
solutions to problems using vastly different approaches
● Understanding a problem and a variety of languages lets us
assess which languages are most suitable for specific problems
● Even if our current language doesn’t directly implement features
of some other language, knowledge of those features might still
allow us to build a solution using the same styles/techniques

Programming paradigms

● Programming paradigms: different styles/approaches to
programming
● We tend to associate specific languages with specific paradigms,
but most languages support multiple paradigms
● Ask 5 academics and you’ll get 7 answers on what the core
paradigms are – we’ll discuss four in some detail
● Well group the paradigms into imperative and declarative
● Imperative: solutions exlplicitly control the specific
order/sequence of instructions/steps to be taken
● Declarative: describe operations and the conditions under which
they are run, specific sequencing not provided

Imperative paradigms

● Procedural: describe step-by-step the exact sequence of
actions to perform, program state explicitly controlled
through assignment of values to variables and memory

● Pure procedural: assembly language, C, bash, etc
● Object oriented: encapsulate operations and data

associated with objects, typically the operations being
expressed in a procedural form

● Pure OO: everything is always an object (e.g. smalltalk)
● Hybrids: most “OO” languages (C++, Java, C#, etc etc)

Declarative paradigms:

● Logic programming: describe the universe by set of facts and rules,
then make queries about the universe, which logic engine tries to
answer by combining facts/rules

● Logic programming languages: prolog
● Functional programming: everything is either a function call or data,

programs consist of compositions of functions, no explicit use of
stored state (variables), no side effects (no pass-by-reference)

● Pure functional languages: haskell
● Hybrid languages: common lisp, scheme, erlang, etc

Language implementation

● The actual implementation of a language has a huge impact on
how effectively the language can be used in different situations

● Impacts runtime behaviour/limitations, speed, memory use,
reliability, security, ease/difficulty of tool development
(debuggers, profilers, compilers, interpretters, etc)

● Developers need to be aware of implementation decisions
made for their language, platform, compiler version so they are
aware of the implications

● Knowing how features can be implemented also lets dev
mimic a feature in languages that don’t otherwise support it

Explore programming languages

● Incredible diversity of programming languages and styles
out there

● Huge library of programming languages (802) many with
code examples for each of many (1070) different tasks:

● rosettacode.org/wiki/Category:Programming_Languages
● rosettacode.org/wiki/Category:Programming_Tasks

C example, stack/push

#include <stdlib.h>
struct Node { // define nodes for our stack
 int data;
 struct Node* next;
};
struct Node* push(struct Node* S, int d) { // push function
 struct Node*n;
 n = (struct Node*)malloc(sizeof(struct Node));
 If (!n) return S;
 n->data = d;
 n->next = S;
 return n;
}
// define an empty stack then call push and update the stack
struct Node *mystack = NULL;
mystack = push(mystack, 10);

C++ STL example, stack/push

#include <stack>

...

// use the STL to create a stack of ints

stack<int> mystack;

// use the stack’s push method to push 10

mystack.push(10);

Lisp example, stack/push

; define a push onto an existing stack

(defun push (S i) (cons i S))

; define a new stack creationg

(defun newStack () ‘())

; push 10 onto a newly created stack

(push (newstack) 10)

Prolog example, stack/push

stack([]). % fact for an empty stack

stack([_|S]) :- stack(S). % fact for non-empty stack

push(E, [E|S], S) :- stack(S). % rule for a push

% issue query to push 10 on a new empty stack

stack(S), push(10, Result, S).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

