

label blocks (local functions)

● Label blocks are much like let blocks, except that we’re
defining local functions instead of local variables
● We create a list of local functions which can be called from
anywhere in the “body” of the label block
● These support recursive calls
● It will be very common to put a let block inside a function
and then put a label block inside the let

Small example

● getNprint uses one local function to get a value from the user,
then another local function to display it

(defun getNprint ()

 (let ((x nil))

 (label ; start list of local functions

 ((getvalue ()

 (format t “Enter something: “) (setf x (read))

 (printvalue () (format t “x is ~A~%” x))) ; end of list

 (getvalue)

 (printvalue))))

Recursion

● Lambda functions can’t be recursive since you can’t call them
by name, but label functions can be recursive

(defun foo (a)

 (label (; start of list of local functions

 (print (n)

 (format t “~A~%” n) (if (> n 0) (print (- n 1))))

) ; end of list of local functions

 ; start of “body” of label block

 ; if a looks ok then call print on it

 (if (and (integerp a) (> a 0)) (print a))))

let-over-lambda-over-label

● recreate our buildCircle using local functions, the lambda
function can be a simple ‘dispatcher’ to call those
(defun circleBuilder

 (&optional (xInit 0) (yInit 0) (rInit 1))

 (let ((x 0) (y 0) (r 0))

 (label ((setCoords (cVals))

 (setRad (rVal))

 (getArea ())

 (print ()))

Body of new buildCircle

 ; after the end of the local function defs,

 ; initialize the local variables from the params

 (if (realp xInit) (setf x xInit))

 ... etc ...

 ; then create the lambda “dispatch” function

 (lambda (cmd &optional (arg nil))

 (cond

 ((equalp cmd ‘print) (print))

 ((equalp cmd ‘radius) (setRad arg))

 ... etc ...)))))

Scoping and nesting

● The local functions aren’t visible outside the label block
(just like let’s local variables aren’t visible outside the let
block)

● Can nest as deeply as you like, e.g. a let inside a let inside
a labels inside a let inside a labels inside a

● Using a clear file layout and an editor with bracket
matching is a really good idea by this point!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

