

Homoiconic languages, self-parsing

● A language is homoiconic if code written in it also forms valid
data under the language
● This means you can effectively “see” the internal
representation just by looking at the source code
● Lisp is a good example, where you can see your source
code as a lisp list, and your lisp code can read, manipulate,
and generate lisp code
● Other homoiconic languages include scheme, racket,
closure, mathematica, wolfram, julia, prolog, snobal, tcl, ...

Parsing lisp in lisp

● We’ll build up a simple translator, that takes a list of lisp
statements and builds a list of strings describing them

● We’ll have a recursive function, interpretter, go through the
list and translate one statement at a time (using function
intepret1) and add the resulting string to a list

● In the beginning we’ll just handle a few kinds of
statements, but we could incrementally add support for
more and more types

Parsing lisp in lisp

● Our top level instruction to go through the list of
statements and build up a list of descriptions
(defun interpretter (statements)

 (cond

 ((not (lisp statements)) nil)

 ((null statements) nil)

 (t (cons (interpret1 (car statements)

 (interpret (cdr statements)))))

Interpretting a statement

● Our interpret1 function takes a single statement and generates
the description string for it

● The function begins by looking at the data type for statement (is
it a function, is it a number, is it a list, etc)

● If the statement is actually a list then we’ll recursively analyze
that

● As a first pass we’ll simply return a string for the type of the
statement (e.g. for a statement like (f x) it will just return
“function call” as the description)

● Later we can replace the strings with function calls that build
more accurate descriptions

interpret1

(defun intepret1 (statement)

 (typecase statement

 (function “function_call”)

 (number “numeric_value”)

 (string “text_string”)

 ; for lists, refer back to interpret to analyze contents

 (list (list “list_of “ (interpret statement)))

 ; add more cases to cope with more of language

 (t “something_else”)))

Trial run

● If we try interpret on (25 “foo” t (interpret 10)) we get

 (numeric_value text_string something_else
 (list_of (function_call numeric_value))))

● This is on the right track, but for a function call like
(interpret 10) we might want it to say something like
 (function_call function_name numeric_val)

instead of
 (list_of (function_call numeric_value)

Tweak for functions

(defun intepret1 (statement)

 (typecase statement

 (number “numeric_value”)

 (string “text_string”)

 ; introduce special intepret function for lists

 (list (interpretList statement))

 ; add more cases to cope with more of language

 (t “something_else”)))

interpretList

● Check if it is a list or a function call
(defun interpretList (L)

 (cond

 ((not (listp L)) nil)

 ((null L) “empty list”)

 ; special handling of function calls

 ((typep (car L) ‘function)

 (list “func_call (car L) (interpret (cdr L))))

 ; regular handling of a data list

 (t (list “list_of (interpret L)))))

Trial run 2

● Try interpret on (25 “foo” t (interpret 10)) again:

 (numeric_value text_string something_else
 (func_call INTERPRET (numeric_value)))

● This is pretty close, though we might want to get rid of the
brackets around INTERPRET’s parameter list, e.g. using
(append (list “func_call (car L)) (interpret (cdr L)))

● Instead of
(list “func_call (car L) (interpret (cdr L)))

Continuing on ...

● We can add parsing for more language features by
expanding our typecase in interpret1, so that it calls a
custom function for each different possible item type

● We could expand the intepretList to recognize key lisp
keywords such as let, cond, if, etc where the function
name appears, and call custom interpret routines for each

● We could add file handlers, to read the data from .cl files,
and error handling etc

● Note the built in (read) function must be doing something
like this already....

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

