

Describing languages

● need a way to describe languages so everyone involved can
understand/predict exactly how any program should behave
● “everyone” includes programmers, testers, designers of
language tools (compilers, debuggers, etc), doc writers, etc
● natural language (english, french, etc) explanations tend to be
wordy/convoluted when trying to explain subtleties, nuances
● examples, pseudo-code, and flow charts rarely capture all side
effects/special cases unless you provide a huge collection

Suitable description mechanism

● want a precise, unambiguous means of describing both the
syntax rules of the language and the meaning (semantics) the
the language constructs

● ideally, this should support automated construction of
language processing tools (debuggers, compilers, etc)

● use special grammars for formal definition of a language:
● regular grammars to describe tokens
● context free grammars (CFGs) to describe syntax
● augmented grammars to capture semantics (meaning)

Grammars and language specs

● The formal grammars give the “official” definition of the
language, and serve as the basis for tool design

● Not readily human readable, so generally also supply natural
language descriptions, pictures, examples, etc, but really
these are informal translations of the formal defs

● Language definitions evolve over the years, with refinements
of the grammars and informal translations, both to correct
mistakes and improve the language

● Care needs to be taken with changes that impact backwards-
compability with previous definitions of the language

Languages to describe languages

● different kinds of grammar have different limitations in what
they can describe (proofs in CSCI 320):
● regular grammars to describe the basic tokens of a

language (the alphabet, keywords, operators, and
symbols)

● context free grammars to describe the structural syntax
(format of loops, function definitions, etc)

● augmented grammars to describe the semantics,
meaning (type checking rules, scoping rules, etc)

Typical compiler actions

● compiler developer writes it to follow the grammar rules
● read source code and puts in standardized form (e.g. strips out

comments, standardizes whitespace)
● run preprocessor to handle macros, templates, etc
● use regular grammar rules to turn resulting code into a sequence of

tokens (keywords, operators, etc), called tokenizing
● use CFG rules to build abstract representation of the syntax, build a

symbol table to keep track of data associated with each symbol
found, use augmented rules to determine semantic meaning

● apply optimizations and generate resulting machine code

Automated compiler generation

● If we put our grammar rules into a standardized format, we
can have a program read the grammar rules and generate
the compiler for us! (also called compiler-compilers)

● tokenizers use regular grammars to generate the list of
tokens (done by programs like lex, flex)

● yacc (yet another compiler compiler), bison, antlr are
examples of programs that read a grammar and produce a
compiler (often using tools like lex/flex also)

● resulting compilers generally less efficient than those
carefully designed ‘by hand’, but the tool does the work for us

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

