

Function definitions (defun)

● The function used to define other functions is called defun
● It expects three or more parameters:
● The first is the name of the function
● The second is the parameter list
● The remaining parameters are treated as the sequence of
function calls to make (the body of the function)
● e.g. a function to return the square of x (nil for non-numbers)

 (defun square (x) (if (numberp x) (* x x) nil))

Documentation strings

● It is common to make the first statement in a function
simply a string, like a one-line help, e.g.
(defun foo (x)

 “foo just returns whatever you passed to it”

 x)

● To look up the documentation string for a function:
(documentation ‘foo ‘function)

Multiple statements in a function

● Not “pure” f.p., but if a function body consists of multiple
statements it will execute each in sequence, then the
function returns the value of the last statement run
(defun multByUserValue (x)

“gets a value from the user & return that * x”

 (format t “Enter a number: “)

 (* x (read)))

Type checking on parameters

In a function one of the first things we typically do is check
the passed parameters were actually of the right types
(defun intpow (x y)

“returns x^y if both are integers, otherwise nil”

 (cond

 ((not (integerp x)) nil)

 ((not (integerp y)) nil

 (t (expt x y))))

Setf and defvar inside a function

● Variables declared with defvar are not local to the function,
don’t use it inside a function (we’ll look at local vars using
let blocks)

● Remember that if you use setf on an undeclared variable it
acts like a defvar

● If you use setf on a parameter then it changes the local
value of the parameter (generally ok, as long as that’s
what you meant to do of course)

Local variables using let blocks

● Let blocks let us define and initialize a set of local variables,
and use them within a sequence of lisp statements

● Let is still just a function, its return value is the value returned
by the last statement in the block
(let

 ((a 5) (b “foo”)) ; list of local vars, a=1, b=”foo”

 (format t “b is ~A~%”) ; first statement prints “b is foo”

 (* a a)) ; last statement returns 25

● can be used anyplace a lisp function call can be made

Typical function layout

1st line is documentation string, rest of body is a let block with
local vars, body of let is a cond, starts with error checking

(defun foo (a b c)

“foo does stuff”

 (let

 ((answer 42) (why “ Y!”))

 (cond

 ((equal a b) c)

 (t nil))))

Other options coming later

● special: for dynamically scoped variables
● &optional: to give default values to optional parameters
● &rest: to allow any number of parameters to be passed and

processed
● &key: to allow keyword parameter passing instead of positional
● Values: allows a function to return multiple values (and nth-

value to capture specific ones)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

