
  

Why functional programming/lisp?

● Assuming you’ve all had decent exposure to mix of procedural 
and OO programming (e.g. C++ or Java)
● Assuming you’ve not had a lot (or any?) exposure to functional 
programming
● A very different paradigm, think about problems in different ways, 
useful in different situations
● Common lisp is widely used, hybrid of functional and procedural 
(and can see lisp’s influence on OO)
● Also a homoiconic language, so can treat it’s own code as lisp 
data, allows lots of potential for metaprogramming  



  

(pure) Functional programming

● Put simply, everything is a function, e.g. “if” is a function, 
loops are actually recursive functions, even defining a 
function is done by a function call

● All computation done by composing function calls
● No stored state (no variables, no explicit memory 

allocation/use)
● Functions have no side effects (no global variables, no 

access to shared memory, no reference parameters)



  

Programming by function composition

● Instead of providing a sequence of actions and storing 
intermediate values in memory, we directly pass the result 
of function calls as parameters to other function calls

● e.g. suppose we want to read a number from the user, 
compute its square root, add 10, and print it out:

● print( add(10, sqrt( read() ) ) )
● When it runs, it evaluates from inside out (i.e. read returns 

value to sqrt, which returns value to add, which returns 
value to print, which displays it)



  

Advantage: simplicity of expression

● Often (certainly not always) a functional solution can be 
expressed in a very concise form, eliminating much of the 
logistical clutter that comes with procedural or OO 
languages

● Often closely related to the ease/simplicity of expressing 
recursive solutions to problems compared to expressing 
procedural solutions



  

Advantage: testing simplicity

● No function side effects, so we can unit test each function 
in isolation – if each function works individually then (as 
long as our final call logic is correct) the program as a 
whole will work

● No variable states – never need to worry if  values are set 
in the correct order, if variables have been initialized or 
updated in the right order, never need to worry about race 
conditions



  

Advantage: easy parallelization

● Suppose we have following composition:
● f ( g( 7 ), h(12 ), i( 60 ))
● g, h, i can’t affect one another (no state, no side effects) so 

they can be run in any order
● If we have free processors available, we can simply throw 

one function call at each to have them run safely in parallel
● Automatic parallelization of programs in procedural 

languages  much more challenging



  

Advantage: proofs of correctness

● As with testing, if we can ‘mathematically’ prove each of 
our functions is correct individually, and prove each 
composition is correct individually, then the entire program 
is provably correct

● This is much more challenging in procedural languages 
because of the complications introduced by side effects 
and variables/shared memory



  

Problem: inefficient recursion

● Recursive solutions tend to rely on stack based approach, 
with each recursive call generating a new stack frame, 
cleaned up when that call eventually returns

● Deep recursion uses lots of stack space this way, along 
with the overhead of a function call (setting up stack 
pointers, adjusting program counters, etc)

● Solution: tail recursive solutions use time and space 
proportional to the comparable iterative solutions, but are 
generally not as elegant as the “simple” recursive solutions



  

Problem: repetitive computation

● Suppose we compute f(x) where f is very computation 
intense, then we need to pass the result to two seperate 
functions, e.g.  foo( g(f(x)), h(f(x)) )

● We wind up computing f(x) twice – slow/expensive
● Solution: introduce new intermediate function, e.g. have 

function foo(a) actually perform foo(g(a),h(a)) then have 
top level function pass f(x) to foo

● Can use a similar solution if we want to read a value from 
user and pass it to multiple other function calls



  

Problem: what if we want a sequence

● Maybe sometimes we really really want to force things to 
happen in a particular sequence (e.g. prompt the user then 
read a value from them)

● Need to ensure the two actions are not in parallel streams of 
parameters, e.g. f( g(x), h(x)): we can’t know (in pure form) 
which of g or h will happen first

● If we want g to happen first and f to happen last, then our 
structure needs to reflect f( h( g(x) ) ) and function parameters 
and return values need to be designed accordingly



  

Hybrid functional langages

● As with “OO” languages, most functional languages are 
actually hybrid of functional and procedural (and often OO)

● Allows developer to take advantage of functional style and 
functional solutions where appropriate, but also to use 
procedural style where that is more effective

● We’ll use common lisp, which is very much a hybrid


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

