

Data types

● what kinds of data can be naturally modeled in the language?
● what kinds of operations are naturally supported on each?
● what does syntax/operator set look like for each type?
● what options are there for internal representations?
● for “specialty” languages, the data types often revolve around
the specialization (e.g. strings in bash)
● primitive types: core data types, not implemented in terms of
collections or groupings of other types
● composite types: collections or groupings of other types
● user defined types: can user create/name their own types?

Primitive types

● Typical primitive types are integers, real numbers, characters,
booleans

● Might be a variety of different integer and real types,
supporting different ranges of values or different precision

● Ordinal types: have a finite set of possible values, often
subranges of integers or characters, or enumerated value sets

● Strings can be a primitive type in some languages (where
they’re not modeled as a collection of characters)

Integer types

● Generally a finite range of possible values for each integer type (e.g.
-32768 to +32767 for a short, -2147483648 to 2147483647 for an int, etc)

● host of numerical operations usually supported, +, -, *, etc, often
directly using underlying hardware operations (might also include
operations like bit shifts, bitwise and, or, xor)

● often support implicit conversions to/from reals, sometimes to/from
strings

● Ranges often based on the assumption of a two’s complement
representation using a fixed number of bits, e.g. with N bits can
represent -2^(N-1) to +(2^(N-1))-1

Compilers and optimizations

● Compiler often recognizes more efficient ways to
implement certain optimizations

● e.g. 16*x might be implemented by shifting x left 4 bits
● e.g. x = 37.5; might actually store the 37.5 using an

integer whose bit pattern matches that for float 37.5, and
moving that “integer” into x’s memory space

Real numbers

● Common representation uses sign bit, fixed number of bits for
exponent, fixed number of bits for precision

● 34.75 is 32 + 2 + 1/2 + 1/4
● abstractly, bit pattern would be 100010.11, but might be thought of as

1.0001011 x 2^5

● For 16 bit floats, perhaps use 1 bit for sign, 4 bits for exponent, 11
bits for mantissa

● Thus 0 0101 10001011000
● Or, treating the mantissa 1 as implicit, use 11 bits for mantissa to

get 12 bits of precisions

Real numbers continued

● Usual host of math operations typically supported
● Some might be implemented directly in hardware, e.g. by a

floating point unit, others in software
● Compiler responsible for identifying which is available and

which to use, as well as any optimizations

Rational numbers

● while often treated as if they were primitive types, rationals
often represented as two integers (e.g. in a struct, class, or
array) with one part for numerator, one for denominator

● operations include usual math (+, -, *, etc) but typically
implemented in software, not hardware

● need to consider whether stored in simplified form or to
include a simplification operation, including handling of
positive/negative numerator/denominator

Complex numbers

● as with rationals, often represented as a composite with
values for real and imaginary components

● as with rationals, operations typically implemented in
software, not hardware

“Big” integers and reals

● data types like bignum sometimes supported for arbitrary-
length numbers

● actually represented as a composite type, e.g. an array or
linked list, representing the number in chunks

● requires software implementation of operations (+, -, etc)
to match the composite structure

Booleans

● may or may not be its own named type (e.g. bool)
● representations of true, false
● often tied to representation of a core type (C: 0 is false,

anything else is true. Lisp: nil is false, anything else is true)
● typical operations: assignment, equality tests, and, or, not
● often supports conversion to/from matching core type (e.g.

ints with C)
● theoretically implementation could be single bit, but

typically actually uses a byte

Characters

● what characters can be used? often tied to underlying representation:
ascii, ebcdid, unicode, etc (fixed vs variable sized character reps?)

● syntax for a char often meant to be distinct from string syntax, e.g. ‘x’,
#\x, etc

● operations typically include assignment, equality tests
● testing subsets types? (isspace, isalpha, isdigit, etc)
● conversions? (toupper, tolower, char-upcase, char-downcase)
● translation between integer code and associated character? e.g. (char)

(37), (int)(‘x’), (code-char 37), (char-code #\x)

● ordering comparisons (based on character code? a fixed “agreed”
ordering? customizable?)

Data type implementations in C

● C (and hence C++) allows us to lookup the number of bytes
needed to store an item of a given datatype using the sizeof
operator, e.g. sizeof(short), sizeof(int), sizeof(char),
sizeof(double), etc

● This also works on user defined types, e.g.
typedef struct { int i; float f } MyStructType;

printf(“%d\n”, sizeof(MyStructType));

Internal structure of types

● C also allows us to use the & operator to look up the
memory address of items, including elements within an
array and fields within a struct, e.g.

● Let’s display the memory address (in hex) of the start of a
struct and each of its fields
MyStructType s; // had int field i and float field f

printf(“%p, %p, %p\n”, &s, &(s.i), &(s.f));

Internal structure of types

● Finally, we can use type casting to display the bit patterns
used to store variables, fields, and elements of interest,
e.g. typecast something to either a pointer or unsigned
integer of the same size, then print it in hex

● Later we’ll examine use of unions to investigate deeper
● Together, sizeof, &, and type casting allow us to

investigate the internal storage and data representation of
C types in great detail

Example: investigate a struct

#include <cstdio>

struct Stype { int i; float f; }

union Cheat { Stype s; int* p; } // both are 8 bytes

int main () {

 Cheat data; // can hold an int* or an Stype

 data.s.i = 25; // store Stype data

 data.S.f = 5.375;

 printf(“%p\n”, (void*)(data.p)); // look at as a ptr

}

// prints 0x40ac000000000019, 4 bytes are f, 4 bytes are i

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

