

C++ OO implementation

● Brief look at C++ implemention of classes/objects
● Basic implementation of fields/methods using structs and
function pointers
● struct layout for inherited fields and statically-dispatched
methods (the default)
● Handling of dynamic dispatch through virtual function tables

Class relationship to C structs

● Idea: store fields of a class based on C-style structs
● Methods: referred to from within struct using function

pointers, actually implemented as (global) functions
● Name of the function representing a method specifies class

and method, e.g. SomeClass::Amethod
● Parameter list for the function needs to know which actual

struct contains the data it’s supposed to access, done by
passing pointer to the struct (“this” pointer)

Hidden inclusion of “this” pointer

● Developer view vs (simplified) underlying implementation

// source code view

class C {

public:

 int i;

int foo(int x) (

};

// sample call

C a;

result = a.foo(3);

// underlying struct might look like
struct C {

int i;
int (*foo)(C*,int);

};

// actual function might look like
int C::foo(C* this, int x)
{

return (x + C->i);
}

// actual call might look like
result = (*(a.foo))(&a, 3);

Simple inheritance

● If one class inherits from another, its underlying struct contains
space for all the fields from both

class Parent {

int x, y;

};

class Child: Parent {

int y, z;

};

// underlying child struct
// names are just for clarity,
// compiler would use offsets
{

int Parent::x, Parent::y;
int Child::y, Child::z;

}

Dynamic dispatch

● By default C++ uses static dispatch of methods, needed a syntax
for developer to specify they want dynamic, done by creating an
abstract base class, in which the function pointer for the relevant
method is set to null,e.g.

virtual void foo() = 0; // within the class definition

● Means all “real” classes derived from this abstract base must
override that method with an actual implementation

● Compiler must insert code so that, whenever foo is called, the
correct “real” method can be found and called

Virtual function tables (vtable)

● Compiler creates virtual function tables (vtable) for each class that
uses dynamic dispatch

● vtable contains pointers to the locally overrides for each such
method, and also pointers to its ancestors vtables

● At point of call, the inserted lookup code searches the vtables to
find the correct (most localized) version of the function to be
invoked

● Means that actual call to such methods might have to traverse
multiple vtables before identifying and calling the correct function

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

