CFGs and syntax

- Having established a list of tokens, we need to describe the syntax rules for valid ways to string them together
- Our CFG will describe the ways in which parts of a program are defined in terms of sequences of token types, e.g. the syntax rules for variable declarations, the syntax rules for assignment statements, etc
- For each component that can be built, we'll provide rules for all the different valid forms of construction
- We'll borrow the yacc syntax for our CFG rules

Basic rule format

- A rule shows the name for the type of component being described (e.g. var_declaration) then a : then the sequence of token types required, then end the rule with a ;
- e.g. suppose we had defined tokens named IDENTIFIER, INT, CHAR, FLOAT, SEMICOLON, then rules might look like

```
data_type: CHAR ;
data_type: INT ;
data_type: FLOAT ;
```

- Components can be built up of other components var_declaration: data_type IDENTIFIER SEMICOLON ;

Collapsing rules with or |

- In cases where there are multiple ways to build a component, we can use a single rule and separate the different constructions with | (or)
data_type: CHAR ;
data_type: INT ;
data_type: FLOAT ;
- Could be replaced with
data_type: CHAR | INT | FLOAT ;

Describing a program components

- We'll have a name for each component, which it will either be a token or a non-terminal component composed of a sequence of tokens
- Non-terminals are used to describe parts of the program in abstract terms, e.g. to describe a for loop, or a function declaration, or a variable declaration, etc
- We'll have a generic starting non-terminal to describe the entire program, e.g. something like program or start
- Our rule set has to describe all the ways to get from the starting non-terminal to a final valid sequence of tokens

Example: a simple language

- Suppose our tokens are: identifiers (one or more alphabetic), positive integers (one or more digits), an assignment operator (=), the keywords begin and end, and the addition operator (+), the period (.)
- Assume we have a regex for each, our CFG uses names for the token types: IDENTIFIER, INTEGER, ASSIGN, BEGIN, END, PLUS, STOP
- Programs start with begin, finish with end, and can have one or more assignment statements inside
- Assignment statements look like identifier = expression .
- Expressions can be integers, identifiers, or expr + expr

Valid sample program

- A valid sample program might be begin
$x=27$.
end
- Another valid program might be
begin
foo $=123$.
$x=17+$ foo +100 .
end

Developing a rule set

- Let's use program as our starting non-terminal, assign_stmt as the non-terminal for an assignment statement, and expression as the non-terminal for an expression
- We'll need a non-terminal to represent an entire list of statements, so let's use stmt_list
- We can now start building the rule collection
- Our program as a whole is a begin, followed by a statement list, followed by an end, i.e.
program: BEGIN stmt_list END

Rule set, continued

- A statement list is a single assignment statement, or an assignment statement then more statements
stmt_list: assign_stmt | assign_stmt stmt_list
- An assignment statement is an identifer, the assignment operator, an expression, and a period
assign_stmt: IDENTIFIER ASSIGN expression STOP
- An expression is an identifier, an integer or expr + expr
expression: IDENTIFIER | INTEGER |
expression PLUS expression

The whole grammar

- Thus our complete grammar (assuming we've handled the tokens' regular expressions separately) is:

```
program: BEGIN stmt_1ist END
stmt_list: assign_stmt | assign_stmt stmt_list
assign_stmt: IDENTIFIER ASSIGN expression STOP
expression: IDENTIFIER | INTEGER |
expression PLUS expression
```


Derivations: checking validity

- To see if a program is valid under a grammar, we (or the tool) searches for a way to generate that program using the grammar rules
- If a program cannot be generated under the grammar rules then it cannot be a valid program
- If a program can be generated under the grammar rules, then the sequence of rules applied tell us what the components of the program are (e.g. a variable declaration, followed by a function definition, followed by a function call)

Derivation example

- A derivation for our first sample program
begin
$x=27$.
end
- The steps in the derivation would be

Program -> BEGIN stmt_list END
stmt_list -> assign_stmt
assign_stmt -> IDENTIFIER ASSIGN INTEGER STOP
And, for the regular expressions resolving the tokens:
IDENTIFIER -> x
ASSIGN -> =
INTEGER -> 27 STOP -> .

Derivation example 2

- Consider our second program

> begin
foo $=123$.
$x=17+$ foo +100 .
end

- The derivation steps might start like

$$
\begin{aligned}
& \text { program -> stmt_list } \\
& \text { stmt_1ist -> assign_stmt stmt_1ist } \\
& \text { stmt_1ist -> assign_stmt }
\end{aligned}
$$

Deriv example 2 continued

- For the first assignment statement assign_smt -> IDENTIFIER ASSIGN expression STOP expression -> INTEGER
- For the second assignment statement
assign_stmt -> IDENTIFIER ASSIGN expression STOP
expression -> expression PLUS expression
- Then (arbitrarily) resolving the expressions left-to-right
expression -> INTEGER
expression -> expression PLUS expression
expression -> IDENTIFIER
expression -> INTEGER

Derivation trees, program meaning

- We can also represent the derivations as a tree, e.g.

Ambiguous grammars

- If there is more than one way to generate a particular program under the grammar then there are multiple possible interpretations about what the structure of the program is
- The grammar is called ambiguous
- Not a good thing: e.g. one compiler might pick one derivation while a different compiler picks another, and the same source code could thus produce executables that behave differently

Example: ambiguous grammar

- We can demonstrate our sample grammar was ambigous by showing a second, different, valid derivation tree for the program from example 2
- The difference will be in the expression for the second statement: the first time we expanded the expression nonterminals from left to right, this time we'll expand them in the opposite direction

Different expression derivations

Meaning: 17 + (foo + 100)

Eliminating ambiguity

- We can structure our grammar rules to enforce which terms to expand next, e.g. instead of expr -> expr + expr we could use
- Expr -> expr PLUS INTEGER | expr PLUS IDENTIFIER
- thus it would finalize the term to the right of the +, so foo $+3+x$ would be expression

IDENTIFIER foo

Order of operations: associativity

- the grammar rules we pick must reflect our desired order of operations, both precendence and associativity
- expr -> expr plus integer implies the rightmost plus is evaluated last, which means order of evaluation is left to right (typically what we want)
- expr -> integer plus expr implies the leftmost plus is evaluated last, i.e. + operations would evaluate right to left (not usually what we want for + , but might be the desired order for assignment, e.g. for things like $x=y=z$;)

Order of ops: precedence

- We want higher precedence operations to be "lower" in the derivation tree, so they get performed first, e.g. for $x+y^{*} z$ what we want is effectively $x+\left(y^{\star} z\right)$, and for $x^{\star} y+z$ what we want is effectively ($x^{*} y$) $+z$
- To get this effect, we can create separate non-terminals for the different precedence levels of expression, and have the grammar rules finalize the lower precedence operations earlier in the derivation

Example: + and *

- We'll introduce two expression types: add_expr and mult_expr, and have our derivations process every add_expr first so they're "higher" in the tree

```
expr -> add_expr
add_expr --> add_expr PLUS mu\t_expr
    | add_expr PLUS mult_expr
    | mult_expr
```

- ie there will be no way for a mult_expr to lead back to an add_expr, so our derivations are forced to deal with every plus before any mult

Example + and * continued

- Now we can process the mult operations

$$
\left.\begin{array}{rl}
\text { mult_expr }-->\text { mult_expr MULT simple } \\
& \mid \text { simple }
\end{array}\right\} \begin{aligned}
\text { Simple --> INTEGER } \\
\text { | IDENTIFIER }
\end{aligned}
$$

- Note that if an expression was just an integer (or just an identifier) the derivation now goes
expr -> add_expr -> mult_expr -> simple -> INTEGER

Example: derivation tree

- Consider v + w * x * y + z add_expr

Adding handling of parenthesis

- Generally the () are regarded as highest precedence, and working from the "outside" in, so these have to be reflected in our grammar rules
- For our "simple" rule from the previous example, we can add our bracket checker

```
Simple --> INTEGER
    | IDENTIFIER
    | LBRACKET expr RBRACKET
```

- Thus the content inside the brackets is treated as a normal toplevel expression, assuming lbracket and rbracket are "(" and ")"

"Real" languages

- You can see the lex tokenization for C at www.1ysator.1iu.se/c/ANSI-C-grammar-1.htm1
- Similarly, you can see the yacc syntax parsing for C at www.1ysator.1iu.se/c/ANSI-C-grammar-y.htm1
- While it takes some time to follow through the sequences, the ideas have all been covered!

