
  

CFGs and syntax

● Having established a list of tokens, we need to describe the 
syntax rules for valid ways to string them together
● Our CFG will describe the ways in which parts of a program 
are defined in terms of sequences of token types, e.g. the 
syntax rules for variable declarations, the syntax rules for 
assignment statements, etc
● For each component that can be built, we’ll provide rules for 
all the different valid forms of construction
● We’ll borrow the yacc syntax for our CFG rules



  

Basic rule format

● A rule shows the name for the type of component being 
described (e.g. var_declaration) then a : then the sequence of 
token types required, then end the rule with a ;

● e.g. suppose we had defined tokens named IDENTIFIER, INT, 
CHAR, FLOAT, SEMICOLON, then rules might look like
data_type: CHAR ;

data_type: INT ;

data_type: FLOAT ;

● Components can be built up of other components
var_declaration: data_type IDENTIFIER SEMICOLON ; 



  

Collapsing rules with or |

● In cases where there are multiple ways to build a 
component, we can use a single rule and separate the 
different constructions with | (or)
data_type: CHAR ;

data_type: INT ;

data_type: FLOAT ;

● Could be replaced with
data_type: CHAR | INT | FLOAT ;



  

Describing a program components

● We’ll have a name for each component, which it will either 
be a token or a non-terminal component composed of a 
sequence of tokens

● Non-terminals are used to describe parts of the program in 
abstract terms, e.g. to describe a for loop, or a function 
declaration, or a variable declaration, etc

● We’ll have a generic starting non-terminal to describe the 
entire program, e.g. something like program or start

● Our rule set has to describe all the ways to get from the 
starting non-terminal to a final valid sequence of tokens



  

Example: a simple language

● Suppose our tokens are: identifiers (one or more alphabetic), positive 
integers (one or more digits), an assignment operator ( = ), the 
keywords begin and end, and the addition operator  ( + ), the period (.)

● Assume we have a regex for each, our CFG uses names for the token 
types: IDENTIFIER, INTEGER, ASSIGN, BEGIN, END, PLUS, STOP

● Programs start with begin, finish with end, and can have one or more 
assignment statements inside

● Assignment statements look like identifier = expression .
● Expressions can be integers, identifiers, or expr + expr



  

Valid sample program

● A valid sample program might be
begin

x = 27 .

end

● Another valid program might be
begin

foo = 123 .

x = 17 + foo + 100 .

end



  

Developing a rule set

● Let’s use program as our starting non-terminal, assign_stmt 
as the non-terminal for an assignment statement, and 
expression as the non-terminal for an expression

● We’ll need a non-terminal to represent an entire list of 
statements, so let’s use stmt_list

● We can now start building the rule collection
● Our program as a whole is a begin, followed by a 

statement list, followed by an end, i.e.
program: BEGIN stmt_list END



  

Rule set, continued

● A statement list is a single assignment statement, or an 
assignment statement then more statements
stmt_list: assign_stmt | assign_stmt stmt_list

● An assignment statement is an identifer, the assignment 
operator, an expression, and a period
assign_stmt: IDENTIFIER ASSIGN expression STOP

● An expression is an identifier, an integer or expr + expr
expression: IDENTIFIER | INTEGER |

            expression PLUS expression



  

The whole grammar

● Thus our complete grammar (assuming we’ve handled the 
tokens’ regular expressions separately) is:
program: BEGIN stmt_list END

stmt_list: assign_stmt | assign_stmt stmt_list

assign_stmt: IDENTIFIER ASSIGN expression STOP

expression: IDENTIFIER | INTEGER |

            expression PLUS expression



  

Derivations: checking validity

● To see if a program is valid under a grammar, we (or the 
tool) searches for a way to generate that program using the 
grammar rules

● If a program cannot be generated under the grammar rules 
then it cannot be a valid program

● If a program can be generated under the grammar rules, 
then the sequence of rules applied tell us what the 
components of the program are (e.g. a variable declaration, 
followed by a function definition, followed by a function call) 



  

Derivation example
● A derivation for our first sample program

begin

x = 27 .

end

● The steps in the derivation would be
Program -> BEGIN stmt_list END

stmt_list -> assign_stmt

assign_stmt -> IDENTIFIER ASSIGN INTEGER STOP

And, for the regular expressions resolving the tokens:
IDENTIFIER -> x      ASSIGN -> =

INTEGER -> 27        STOP -> .

 



  

Derivation example 2

● Consider our second program
begin

foo = 123 .

x = 17 + foo + 100 .

end

● The derivation steps might start like
program -> stmt_list

stmt_list -> assign_stmt stmt_list

stmt_list -> assign_stmt



  

Deriv example 2 continued

● For the first assignment statement
assign_smt -> IDENTIFIER ASSIGN expression STOP

expression -> INTEGER

● For the second assignment statement
assign_stmt -> IDENTIFIER ASSIGN expression STOP

expression -> expression PLUS expression

● Then (arbitrarily) resolving the expressions left-to-right
expression -> INTEGER

expression -> expression PLUS expression

expression -> IDENTIFIER

expression -> INTEGER



  

Derivation trees, program meaning

● We can also represent the derivations as a tree, e.g.
program

BEGIN ENDstmt_list

assign_stmt stmt_list

assign_stmtIDENTIFIER
ASSIGN

expression

STOP

INTEGER

IDENTIFIER

ASSIGN
expression

STOP

expression PLUS
expression

INTEGER
expression PLUS expression

IDENTIFIER INTEGER

foo

x

123

17
foo 100

= .

=
+

.

+



  

Ambiguous grammars

● If there is more than one way to generate a particular 
program under the grammar then there are multiple 
possible interpretations about what the structure of the 
program is

● The grammar is called ambiguous
● Not a good thing: e.g. one compiler might pick one 

derivation while a different compiler picks another, and the 
same source code could thus produce executables that 
behave differently



  

Example: ambiguous grammar

● We can demonstrate our sample grammar was ambigous 
by showing a second, different, valid derivation tree for the 
program from example 2

● The difference will be in the expression for the second 
statement: the first time we expanded the expression non-
terminals from left to right, this time we’ll expand them in 
the opposite direction



  

Different expression derivations

expression

expression PLUS expression

INTEGER
expression PLUS expression

IDENTIFIER INTEGER

17

foo 100

+

+

expression

expressionexpression

expression expression

PLUS

PLUS
INTEGER

INTEGER IDENTIFIER
+

+

17 foo

100

Meaning: 17 + (foo + 100) Meaning: (17 + foo) + 100



  

Eliminating ambiguity

● We can structure our grammar rules to enforce which 
terms to expand next, e.g. instead of expr -> expr + expr 
we could use

● Expr -> expr PLUS INTEGER | expr PLUS IDENTIFIER
● thus it would finalize the term to the right of the +, so 

foo+3+x would be expression

expression IDENTIFIERPLUS

expression PLUS

IDENTIFIER

INTEGER
x

3

foo

+

+



  

Order of operations: associativity

● the grammar rules we pick must reflect our desired order 
of operations, both precendence and associativity

● expr -> expr PLUS INTEGER implies the rightmost PLUS is 
evaluated last, which means order of evaluation is left to 
right (typically what we want)

● expr -> INTEGER PLUS expr implies the leftmost PLUS is 
evaluated last, i.e. + operations would evaluate right to left 
(not usually what we want for +, but might be the desired 
order for assignment, e.g. for things like x = y = z;)



  

Order of ops: precedence

● We want higher precedence operations to be “lower” in the 
derivation tree, so they get performed first, e.g. for x+y*z 
what we want is effectively x+(y*z), and for x*y+z what we 
want is effectively (x*y)+z

● To get this effect, we can create separate non-terminals for 
the different precedence levels of expression, and have 
the grammar rules finalize the lower precedence 
operations earlier in the derivation



  

Example: + and *

● We’ll introduce two expression types: add_expr and 
mult_expr, and have our derivations process every 
add_expr first so they’re “higher” in the tree
expr -> add_expr

add_expr --> add_expr PLUS mult_expr

           | add_expr PLUS mult_expr

           | mult_expr

● ie there will be no way for a mult_expr to lead back to an 
add_expr, so our derivations  are forced to deal with every 
PLUS before any MULT



  

Example + and * continued

● Now we can process the mult operations
mult_expr --> mult_expr MULT simple

            | simple

Simple --> INTEGER

         | IDENTIFIER

● Note that if an expression was just an integer (or just an 
identifier) the derivation now goes
expr -> add_expr -> mult_expr -> simple -> INTEGER



  

Example: derivation tree

● Consider v + w * x * y + z add_expr

mult_exprPLUSadd_expr

simple

IDENTIFIER

z

+

mult_exprPLUSadd_expr

mult_expr

simple

IDENTIFIER
v

+

mult_expr MULT simple
*

IDENTIFIER
y

mult_expr MULT simple
*

x

simple
IDENTIFIER

IDENTIFIER
w



  

Adding handling of parenthesis 

● Generally the ( ) are regarded as highest precedence, and 
working from the “outside” in, so these have to be reflected in our 
grammar rules

● For our “simple” rule from the previous example, we can add our 
bracket checker
Simple --> INTEGER

         | IDENTIFIER

         | LBRACKET expr RBRACKET

● Thus the content inside the brackets is treated as a normal top-
level expression, assuming LBRACKET and RBRACKET are “(“ and “)”



  

“Real” languages

● You can see the lex tokenization for C at
www.lysator.liu.se/c/ANSI-C-grammar-l.html

● Similarly, you can see the yacc syntax parsing for C at
www.lysator.liu.se/c/ANSI-C-grammar-y.html

● While it takes some time to follow through the sequences, 
the ideas have all been covered!
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