

Arrays

● Ordered collections of elements, accessed by
position
● Single or multi-dimensional
● Typically some uniformity to nature of storage
(e.g. same types or references)
● May or may not support re-sizing of arrays

Syntax

● Array syntax often a highly recognizable aspect of
language, particularly for multi-dimensional arrays

● Subscripting syntax usually needs to be distinct from that
of function calls (lisp unusual in this regard)

● Declaration usually (not always) identifies size, and (for
statically typed languages) stored data type

● Indexing typically 0-based or 1-based

Storage

● Storage might be on stack or in heap
● If on stack, size might be determined statically or at time of call
● Resizable arrays usually require storage in heap
● Cells generally stored sequentially, and of uniform size (e.g.

same stored type, or cells contain references/pointers to actual
storage for the cell data somewhere in heap)

● Uniform size allows compiler to compute cell offsets efficiently,
especially for iteration through cells

Storage of multi-dim arrays

● To generate sequence of all cells in the array, compiler must select an
ordering across the rows/columns

● Row-major order: store elements of row 0 first (in sequence) then elements
of row 1, then row 2, etc

● Column-major order: store elements of column 0 first, then column 1, then
column 2, etc

● Sparse arrays also a possibility: for very large arrays where only a small
percent of cells actually used, only store those cells that contain data, each
cell in a row (or column etc) contains some form of link to next used cell in
that row (column etc)

Passing, copying, returning arrays

● Array assignment may do shallow or deep copy
● When passing arrays as parameters or using as return

values, again may be either shallow copy or deep
● Deep copies significantly increase use of stack space and

time required to perform call/return/copy
● Shallow copies can introduce possibilty of unexpected side

effects

Initialization, assignment

● May or may not be initialized at time of creation
● May or may not generate warnings about use of uninitialized

cells
● Assignment may be possible to single cells, entire row, entire

array, etc depending on language
● Bounds testing (access to out-of-range cells) may or may not

be automatically supported, or may be compiler option
● Does overflow/underflow of cell data affect adjacent cells?

Array resizing

● Some languages support implicit or explicit resizing of arrays
(generally only if arrays stored in heap)

● Implicit resizing: if user accesses out-of-bounds element then
array is automatically resized to make that “in-bounds”

● Explicit resizing: user must explicitly request/specify new size
● Mechanism for resizing might move existing content to new

(big enough) space elsewhere, or may take linked-list
approach to join together chunks of array space

Slices and subranges

● Language might support accessing subrange of array in single HLL
instruction (e.g. copy elements 17 through 27 of one array to positions 2
through 12 of another array)

● Language might also support slices: specifying a subset of the array
indices and taking ALL elements that match that position.

E.g. for a 20x30 array, arr[][3] might specify all the elements in column 3,
or arr[7][] might specify all the elements in row 7.

Could be extended to multiple dimensions, e.g. for three dimensional array,
arr[2][4][] might refer to all elements in row 2 and column 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

