

SDLC: Spiral, agile models

● biggest weakness of waterfall model is failure plan for
revisiting previous phases
● spiral builds in the idea of revisiting stages: divides overall
project into two or more cycles, each cycle goes through
similar phases to waterfall
● nature of versioned software: in first cycle we build just the
core of the product, in each later cycle we add and improve
functionality

Spiral strengths, weaknesses

● Instead of trying to get the entire project right in one pass, we’re
dividing functionality into managable chunks, and dealing with
one chunk in each cycle

● Gets first version to client/market much faster than waterfall, but
overhead of cycles might mean “final” version gets there slower

● Allows client to use/give feedback on each cycle, allowing us to
change plans for future cycles as needs and conditions evolve

Agile model

● Waterfall and spiral models include a lot of process phases that
are meant to improve quality, but which slow down delivery time

● Agile models suggest we use a team of good developers who
ask the user what they (think they) want right now, and
immediately begin coding

● Quickly get something functional to the client/user, who plays
with it and requests further changes

● This rapid cycle of client input/coding allows product to evolve

Agile strengths

● Requirements are implicitly gathered as the project goes along,
through user feedback on what they do/don’t like

● User always has something working, and constantly sees
improvements

● Developers interact directly with users, so the person building the
code has a better idea of users real priorities (ideas aren’t
communicated through intermediate layers of documentation)

● If done well, can quickly evolve towards something highly usable

Agile weaknesses

● Inherently difficult to plan/manage timelines because there really aren’t
any

● Relies on developers making good, maintainable design decisions
based on the early user feedback, otherwise code grows into
unmaintainable mess

● Relies on frequent, high quality interaction between developers and
users – need to get good feedback quickly and react to it appropriately

● Basically you need a good developer team and a good relationship
with the client

Other models

● Many many many many different models
● Many many many different ways to pick what actions belong

in what phases, and what to call them
● Most are hybrids, variants, or expansions on the big three of

waterfall, spiral, agile
● Every organization and every team eventually evolves their

own desired model (formally or not), important that everyone
understands the model in use and their responsibilities in it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

