

Interactive shells

● Most actual operating system commands highly specialized,
not ideally suited for direct interaction with user

● Most systems provide a variety of command interfaces
(shells) to interact with user

● When you are tapping or clicking on icons, or typing
commands in a command window, such a shell interprets
your actions and invokes appropriate programs or OS
commands to handle them

Many many shells out there

● Many different shells supported on different operating
systems, offering different sets of features/support for the user

● Some popular shells supported on many different operating
systems

● The default shell used on our csci servers is Bash, we’ll
discuss it at length this term

● Whenever you type a command, the bash interpretter reads it
and decides how to handle it and give you feedback

Complex tasks and shells

● As developer, we tend to carry out many tasks that involve
long sequences of (sometimes complex) shell commands,
often repeating these task daily, weekly, monthly, etc, e.g.

● Performing an install of complex software
● Configuring a new machine
● Carrying out a backup and generating a status report
● Setting up a test environment for a program, running a suite of tests,
and generating a report on the results

Need for programmatic support

● Complexity of commands + need to do them in sequence means we
should store them and somehow tell the shell “do these”

● Many of the commands involve choices, e.g. “if there is enough disk
space do X, otherwise do Y”

● Many of the commands involve getting file and directory names, or other
arguments, from other programs, files, or the user

● Scripting languages are programming languages to allow user to write
programs (scripts) to interact with the shell, many such languages

● Allows task automation: improving efficiency, reducing errors

Bash

● We can write scripts (command collections) in bash, and
when we run them the bash interpretter will carry out the
specified commands

● Note that languages like bash are highly text-based – they’re
meant to handle commands typed by the user, and to deal
extensively with files, directories, and system commands

● This specialization results in some unusal syntax and
behaviour compared to languages like C++, Java, etc

Creating an executable script

● Put our bash commands into a file, usually given the .sh
extension to show it is a script (remember the #! line)

● From the command line, we make the script executable,
e.g. “chmod u+x mystuff.sh”

● We run the file (and hence all the commands in it), e.g.
using ./mystuff.sh

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

