

Quad trees, addresses

2

2000

21

02

03

10 12 30

22

23

32

311311

Top level node represents entire space, prefix string is “”

Four nodes on second level each represent 1/4 of total space,
Prefix strings are “0”, “1”, “2”, “3”

Sixteen nodes on third level each represent 1/16 of total space,
Prefix strings are “00”, “01”, “02”, ... “33”

Can describe rectangular regions by specifying a lower left (LL)
address and an upper right (UR) address

E.g. LL of 12 and UR of 31 would be the rectangle covering
squares 13, 31, 12, and 30 ... note that it overlaps the two
regions covered by the larger squares 1 and 3

1 3

0

33

01

Inserting items by address in quadtree

● Area an item covers is rectangle, specified by address of
lower left corner and upper right corner, e.g. 010 and 212
● 0,1 are to the left of 2,3
● 0,2 are below 1,3
● If user specifies a partial address for LL then it gets padded
with 0’s to a full address length
● If user specifies a partial address for UR then it gets padded
with 3’s to a full address length

Item size, address

● Items can be of any size bigger than smallest unit in
address space

● e.g. if full address strings are length 5 then a tiny rectangle
might have LL 11111, UR 11112 (covering just two of the
smallest-size quadrants)

● biggest rectangle has LL 00000, UR 33333 (covering
entire space)

Item location in quadtree

● Each node in quadtree has a list of which items that
specific nodes stores

● Each node covers specific region of total space
● Quadtree root covers full space (LL-UR 00000-33333)
● Four nodes at second layer each cover 1/4 of total space

(00000-03333, 10000-13333, 20000-23333, 30000-33333)
● Sixteen nodes at third layer each cover 1/16 of total space

(00000-00333, 01000-01333, ..., 33000-33333)

Addresses, quadrants, tree level

● If we look at the LL/UR addresses of an item, we can identify
the smallest node whose region can completely contain the
item, e.g. LL 01112, UR 01333: look at the common prefix at
the start of the two addresses 01112, 01333 – i.e. from root
go to child node 0, from there go to child node 1

● We use this common prefix to decide which node in the tree
will actually store the item

● each node can store multiple items, maintains a list of all the
items it is storing

Example, max addr length 2

2

2000

21

02

03

10 12 30

22

23

32

311311

Top level node represents entire space, prefix string is “”

Four nodes on second level each represent 1/4 of total space,
Prefix strings are “0”, “1”, “2”, “3”

Sixteen nodes on third level each represent 1/16 of total space,
Prefix strings are “00”, “01”, “02”, ... “33”

Suppose we insert item with LL 03, UR 30: it can’t fit cleanly
within any single node except the top one

Suppose we insert item with LL 12, UR 13: it fits cleanly in the
“1” node

1 3

0

33

01

Observations on demo program

● Demo requires you to create a tree before inserting
● For each item it asks you for name, description, and

addresses of LL and UR (pads with 0’s/3’s if you give
partial address, max addr length is 10)

● Follows our rules on where to insert the item in the tree
● When searching or printing, lets you search/print an entire

subtree, or just a specific node (then asks for the address,
i.e. the prefix string, for that node or top node of subtree)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

