
  

Code profilers and profiling

● When writing code, we generally have some “feel” for how 
effiicient it is (run time and/or memory use)
● That might be supported by big-O complexity analysis of the 
algorithms we use (e.g. O(logN), O(N), etc)
● That doesn’t mean we’re correct, unfortunately, so we often 
want experimental validation of how fast it runs (or how much 
memory it uses) in practice
● Tools to analyze program run time/memory use are called 
profilers



  

How code profilers work (timing)

● Code profilers are often used to analyze not just how long 
a program takes to run (we can get that from shell-level 
tools like /usr/bin/time) but also how long each function or 
method takes to run (cpu time)

● Two main techniques used by profilers: code injection, 
sampling



  

Code injection profilers

● These profilers require re-compiling the program with 
special flags

● At each point where a function call/return is made, these 
code is inserted to check the current system time (down to 
microseconds) and log that information

● The actual profiling program reads and summarizes the 
log file, generating a report on how much time was spent 
in each function/method, how many times it was called, etc



  

Sampling profiler

● These require operating-system level priviledges
● The program is run in a special mode, with OS interrupts 

generated at fixed intervals
● At each of these interrupts, it checks and logs which 

function/method the program is currently executing
● This builds up statistical data on how much time was spent in 

each function
● The profiler analyzes and reports on the statistical data 



  

Drawbacks to each style

● Injection style of profiler adds extra code into the program 
before running it, which subtly alters the run time 
behaviour

● Sampling style of profiler requires operating system level 
priviledges (often not feasible), and gives a statistical 
analysis, not an exact measurement, of run time



  

Gathering useful data

● Generally we want to be able to extrapolate from our profiling 
data, to make predictions on how program will behave on larger 
and larger data sets

● To do so, we need realistic data that can reveal trends
● Means profiling the program on lots of different data sets of 

different sizes (e.g. for a sorting program we might run it on a 
set of 1000 random values, 10000, 100000, etc, to spot trends)

● We need to think about representative data sets, i.e. with 
properties that reflect the real-life data that would be used



  

Memory profiling

● In addition to run time, we often want to analyze how much 
memory a program uses

● Similar implementation ideas, but involves inserting code 
to check how much memory is in use by the program at 
checkpoints

● Might also include code to track each dynamically-
allocated memory element, to monitor its size, see if it is 
freed or not, check for memory leaks etc



  

Gathering profiling data

● Will use profiling data as basis for extrapolating/predicting 
program behaviour, need varied/representative data points

● Sorting example, gather/plot following data:
● suppose we have a sorting program that we think will normally be 

used on files 10,000-50,000 lines long

● Might choose 20 test sizes: 5000, 10000, 15000, ... , 100000 lines 
long, for each size use 3 styles: sorted, reverse-sorted, randomly-
ordered

● For each of the 60 combinations run 5 tests, so 300 tests overall
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