

Code profilers and profiling

● When writing code, we generally have some “feel” for how
effiicient it is (run time and/or memory use)
● That might be supported by big-O complexity analysis of the
algorithms we use (e.g. O(logN), O(N), etc)
● That doesn’t mean we’re correct, unfortunately, so we often
want experimental validation of how fast it runs (or how much
memory it uses) in practice
● Tools to analyze program run time/memory use are called
profilers

How code profilers work (timing)

● Code profilers are often used to analyze not just how long
a program takes to run (we can get that from shell-level
tools like /usr/bin/time) but also how long each function or
method takes to run (cpu time)

● Two main techniques used by profilers: code injection,
sampling

Code injection profilers

● These profilers require re-compiling the program with
special flags

● At each point where a function call/return is made, these
code is inserted to check the current system time (down to
microseconds) and log that information

● The actual profiling program reads and summarizes the
log file, generating a report on how much time was spent
in each function/method, how many times it was called, etc

Sampling profiler

● These require operating-system level priviledges
● The program is run in a special mode, with OS interrupts

generated at fixed intervals
● At each of these interrupts, it checks and logs which

function/method the program is currently executing
● This builds up statistical data on how much time was spent in

each function
● The profiler analyzes and reports on the statistical data

Drawbacks to each style

● Injection style of profiler adds extra code into the program
before running it, which subtly alters the run time
behaviour

● Sampling style of profiler requires operating system level
priviledges (often not feasible), and gives a statistical
analysis, not an exact measurement, of run time

Gathering useful data

● Generally we want to be able to extrapolate from our profiling
data, to make predictions on how program will behave on larger
and larger data sets

● To do so, we need realistic data that can reveal trends
● Means profiling the program on lots of different data sets of

different sizes (e.g. for a sorting program we might run it on a
set of 1000 random values, 10000, 100000, etc, to spot trends)

● We need to think about representative data sets, i.e. with
properties that reflect the real-life data that would be used

Memory profiling

● In addition to run time, we often want to analyze how much
memory a program uses

● Similar implementation ideas, but involves inserting code
to check how much memory is in use by the program at
checkpoints

● Might also include code to track each dynamically-
allocated memory element, to monitor its size, see if it is
freed or not, check for memory leaks etc

Gathering profiling data

● Will use profiling data as basis for extrapolating/predicting
program behaviour, need varied/representative data points

● Sorting example, gather/plot following data:
● suppose we have a sorting program that we think will normally be

used on files 10,000-50,000 lines long

● Might choose 20 test sizes: 5000, 10000, 15000, ... , 100000 lines
long, for each size use 3 styles: sorted, reverse-sorted, randomly-
ordered

● For each of the 60 combinations run 5 tests, so 300 tests overall

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

