

Language-specific debugging

● Most languages include some features/support for
debugging, good idea to know what they are
● Special variables with key information
● Special functions/libraries that can be used
● Special options that can be configured
● We’ll look at some features in C/C++ and in bash

C/C++ special #defined values

● Special #defined variables are available (e.g. to include
when displaying error/debugging messages)

__FILE__ gives current filename, __LINE__ for line number,
and __TIME__, __DATE__ for current time and date

● (note those are double-underscores, not single)
● These can be embedded directly in code, e.g.
std::cout << “On line “ << __LINE__ << “, in file
“;

std::cout << __FILE__ << std::endl;

C/C++ asserts

● #include the <cassert> library (<assert.h> for C)
● The function assert(X) assumes it is being passed a

boolean value, and immediately terminates the program if
the value is false (displaying the assert line that caused
termination)

● This is used as a fail-safe for spots where the developer is
sure the condition must be true, and wants to abort
processing if not, e.g.
assert(myGreatPtr != NULL);

Appropriate use of asserts

● Generally we don’t want to rely on asserts in the
final/production version of a product (no user wants to see
a crash and cryptic source code message)

● They’re primarily used during development as a double-
check that something isn’t broken

● We can turn off asserts during g++ compilation (so we
don’t have to edit our final code to remove them and risk
breaking the code) using flag -DNDEBUG

Bash debugging options

● The -xv flags tell bash to echo each command just before
it runs, so we can see which instructions cause an issue

● #! /bin/bash -xv
● It can also be turned on in the middle of a script using
● set -xv
● (and then turned off again later using set +xv)
● The -u flag can also be turned on/off to give us warnings

when we use an unbound (undeclared/initialized) variable

Traps in bash

● We can also use trap in bash, to execute a specific
command when some event takes place

● e.g. we can use trap to print the value of some variable of
interest whenever the script exits (or crashes)

● trap echo “when script stopped, x was ${x}” EXIT

Build our own bash assert

● A C-like assert could be added if we wanted, say to test a
condition and exit with a specific status if it was false
function assert () {

 if ! [$cond] ; then

 exit $2

 fi

}

● Pass condition as a string, then exit status as int 0-255
assert “$x -lt $y” 1

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

