

Gdb debugger

● Somewhat limited as a debugger, but works in a command
line environment (so compatible with other stuff this term)
● Works for C/C++ programs
● Supports most core debugger features, we’ll examine a few
of the most common commands

Getting started

● When compiling the program, e.g. with g++, you must
include the -g compiler option (include symbol table info in
the .o/exe files)

● Start gdb for a specified executable, e.g. myprogx, using
gdb ./myprogx

● Will spew a bunch of stuff about licensing and
documentation then give command prompt that looks like
(gdb)

Setting breakpoints

● Generally, we want to interrupt program at certain points
(breakpoints) so we can look at what’s happening there

● At (gdb) prompt, we can set breakpoints, specifying either
the name of a function or a line in the source code file, e.g.

(gdb) break foo.cpp:23

(gdb) break foo.cpp:initialize

● Can clear breakpoints using, e.g.

(gdb) clear foo.cpp:23

Running the program

● With our break points set, we can start program running
and pass it command line arguments, e.g.:

(gdb) run 10 foo 17.5

● Program will run normally, prompting user for input etc
normally, until either it ends or it encounters a breakpoint

● At breakpoints, it will pause, show you which line of code it
has reached, and give a (gdb) prompt

Examining data

● When paused at a breakpoint, you can enter commands to
examine variables, constants, or parameters that are in
scope at that point in program by using print (p) command

p somevariablename

● Can change variable value with set command

set somevariable newvalue

● Can also examine (x) contents of a memory address

x 12345678

Stepping forward through code

● At (gdb) prompt following a breakpoint, can tell program to
step forward one instruction using next (n) or step (s), e.g.

(gdb) n

● gdb will show you which instruction it goes on to, then
breaks and gives another (gdb) prompt

● if the instruction processed is a function call, next treats
the call as a single instruction and goes to next line in
current function, but step goes “inside” the called function
to continue stepping there

Resuming or quitting

● To resume “normal” running of the program (i.e. run until
end or until next breakpoint) use continue (c) command

(gdb) c

● To exit the debugger, use the quit command

(gdb) quit

Examining the call stack

● To see the current active chain of function calls, use the
backtrace command

(gdb) backtrace

● Backtrace automatically runs if the program crashes,
showing you which functions were active and which line of
code was running at the point of crash

Lots of other functionality

● Each of the features we discussed has many other options
● Many other features we didn’t get to
● Learning a good debugger can make dev life a lot

smoother, fortunately many (most?) IDEs have built in
debugging functionality

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

