

Product rollout/deployment

● Sooner or later your product is ready for prime time
● The process followed to have it go live will leave a lasting
impression on your clients and end users
● For complex systems, there can be many parts that need to
be set up properly for the whole system to work
● We need to ensure that we are ready for it to go live, that
our clients are ready for it to go live, and we have contingency
plans for things that may go wrong

Smaller, client-side installations

● Even with small applications, many installation and
configuration concerns to address

● What access/permissions are necessary
● Does it alter system settings (paths, keys, startup, ...)
● Which option(s) are user-configurable, to what degree
● How much support do we provide for aborting installation
● Do we support multiple installations

Uninstalls, re-installs

● If user uninstalls, do we restore system settings to what
they were before we installed? Will that impact changes
user has made since then?

● If user re-installs, but had data and custom settings from
previous install, how much of that do we retain, and how
much do we overwrite?

Patches and upgrades

● How do we notify user and let/get them to patch/upgrade?
● How does patch/upgrade handle existing user data and

customized settings?
● Does patch/upgrade work by completely replacing altered

files, or by editing them?
● What permissions are necessary for patch/upgrade to run?
● Does patched system give same behaviour as clean install

of latest version of system?

Push vs pull

● For systems that will be used by many clients, do we push
the new system out to everyone, and make them upgrade,
or do we let them choose if/when we want to upgrade

● The forced upgrade can irritate some users, especially if
there are bugs/glitches/changes from the ‘old way’

● Giving them the choice on if/when tends to increase the
number of systems we wind up actively supporting

● How do the installations know there is a new version
waiting? Do they check in/call home periodically to see?

Larger deployment strategies

● If it’s a huge system, are we deploying all the parts of it at
once, or in stages? There can be more to manage in the
“all at once” approach, but if we do it in parts then the old
parts and new parts need to be compatible

● If it’s being installed in many sites (e.g. a chain of
warehouses), do we do a couple of test sites first? Again,
it reduces the scope of the test installation, but means the
new system at the test site may need to be able to
communicate with the old system at other sites

Getting the client ready

● A new system may represent a substantial change in the
client’s business processes (maybe we’re rolling out a new
system for the tellers at a bank, or new interface for the agents
at an airline, or new software for the cash registers at a grocery
store)

● The users of the new system may need training on it
● Their technical/support team needs to be trained/prepped for it
● Their customers might need to know that hiccups/slowdowns

may occur during the changeover

Getting the hw/sw ready

● A new system might require new hardware, or reconfiguration of old
hardware – this could involve devices at the user end, various servers,
gateways, firewalls etc

● The new system might require installation or upgrades to a range of
software across the various systems

● The new system might involve changes to a variety of configuration
settings, files, permissions

● The new system might require connections/accounts for a variety of
different services

● The new system might require importing or converting a variety of data
files/data bases

Documenting and automating

● The changeover can be a very complex process
● Solid documentation/guides should be created for each

portion of the process, and reviewed by the people
involved

● Where possible, scripts and tools should be used to
automate the process, since manually carrying it out is
likely to be error prone

Testing the process

● Ideally, we want to trust that our deployment strategies will
actually work

● This requires testing as much of the process as possible,
before doing it “for real”

● This, in turn, requires setting up a test environment that is
as close as possible to the actual working environment,
and testing and refining our processes there

Contingency planning

● What if something goes wrong?
● We’d like contingency plans for predictable issues (a

particular part of the process fails), reflecting the impact
they will have on the client/users

● Can we roll back to the old system? Or part of it?
● Which parts can we reasonably provide workarounds for?
● Have the clients/users been adequately warned about and

prepared for the possibility of significant delays?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

