

Compilers, compilation

● Compilers are simply programs that read files of source
code written in one HLL language and translate it into another
language (e.g. another HLL, assembler, or machine code)
● Interpretters are programs that read instructions in a source
language, translate an execute them (i.e. read, translate, and
execute one instruction then read, translate, and execute the
next, etc)

Compiler actions

● Read the source code and put into standardized format
(e.g. standardize whitespace)

● Apply any preprocessor instructions (#includes etc)
● Turn the resulting source code into a list of symbols or

tokens (keywords, identifiers, brackets, etc)
● Analyse the list of symbols for syntactic corrrectness, build

symbol table (e.g. with info about defined items), generate
intermediate representation (implicit “meaning” of the
code)

● Generate and optimize target code from intermediate rep

Symbol table

● The symbol table(s) contains information about all the
programmer-defined classees, functions, data types,
constants, variables, etc

● While processing the code, whenever it encounters a
symbol it refers back to the table to access relevant
information

● Symbol table kept in memory during compilation, not
needed once the code has been translated into target
language (i.e. not stored with the compiled code)

Compiling single-file programs

● When source code for a program is entirely contained in
one file, everything the compiler needs is in that file

● e.g. when you call a function, the actual implementation of
the function is available in the same file

● e.g. if entire program is in prog.cpp, then we can compile
“directly” to an executable (say progx) using command like

g++ prog.cpp -o progx

Compiling multi-file programs

● Suppose a program is divided into multiple files, with some
classes, functions, methods etc implemented in one file
and others implemented in other files

● Either we would have to give the compiler all the files to
recompile at once (suppose there were hundreds, or
thousands...) or the compiler needs some way to compile
files separately, then join the separate parts together later
to build the full executable

● The latter approach, separate compilation, is far more
effective, and far more widely used

Separate compilation, linking

● Suppose a function, foo, is called from one file, e.g. prog.cpp,
but implemented in another, e.g. funcs.cpp

● compile prog.cpp into one file of machine code (with call to foo),
compile funcs.cpp into another file of machine code (with body
of foo), then link together to form an executable, e.g.

g++ -c funcs.cpp -o funcs.o
g++ -c prog.cpp -o prog.o
g++ funcs.o prog.o -o progx

(the -c option tells g++ that we’re doing separate compilation)

Coordination across files

● Problem: when separately compiling prog.cpp, the
compiler still needs to know profile of function foo
(parameters, types, return type, etc) so it can check if the
function call to foo is valid

● Header files (.h files): one solution is to have a file with the
definition (though not the implementation) of the shared
items – e.g. the prototype for function foo

● E.g. we create funcs.h, which contains definitions for
anything funcs.cpp wishes to share, then prog.cpp
references this to check prototype of foo

Header files

● Header files act like a contract between the file supplying a
function or method and the file calling the function or
method

● One file provides an implementation matching the header
file’s description, the other file calls the function in a way
matching the header file’s description

● When the compiler links the two object files it then links up
the call from prog.o with the implementation from funcs.o

Example: the three files

// funcs.h

int foo(int x);

// funcs.cpp

#include “funcs.h”

int foo(int x)
{
 return x + x;
}

// prog.cpp

#include “funcs.h”

int main()
{
 int y;
 y = foo(3);
}

C/C++ header style

● In C/C++ we use the .h extension for header files, and
the .c or .cpp (or .cc or .cxx or .CC etc) extensions for the
implementation files

● Each of the .cpp files use a “#include” line to indicate
which header files they’re using, e.g. #include “funcs.h”

● The #include is a preprocessor directive, telling the
compiler that, before actually compiling, go get all the code
from the specified file and (virtually) copy/paste it here

Example: the compilation process

● Compile the two .cpp files, creating .o (object)

g++ -c prog.cpp -o prog.o
g++ -c funcs.cpp -o funcs.o

● Link the two .o files, creating an executable

g++ prog.o funcs.o -o progx

● Run the executable

./progx

Includes: our own files vs built in

● when a C++ compiler is installed, it is configured with the
location of built-in libraries, .h and pre-compiled .o files

● programs #include these using < > without specifying a
path to them, e.g. #include <iostream>

● we've done this many times already, with <iostream>,
<cstdio>, <string>, <cstring>, <cmath>, etc

● when linking .o files to form an executable we don't need
to specify the location of these library .o files

include directories, -I and -L

● we can tell the compiler the location of additional
directories of .h files use -I and the path/directoryname,
e.g. g++ -Isomedir/myincludes myprog.cpp

● the compiler will find the .h files in such directories even if
we forget to specify a path in our .cpp file's #includes

● similarly a -L option exists in g++ to specify the location of
additional directories of .o files to automatically support

What if we edit a .cpp or .h file?

● If we edit a .cpp file, we need to recompile that one file
(updating its .o) and then relink the .o’s for a new
executable (we don’t need to recompile the other .cpp file)

● If we edit the .h file, since it contains definitions used by
both other files, we need to recompile both .cpp files and
also relink the .o’s to create a new executable

● Ideally, when we edit some .h/.cpp files we want to
recompile exactly the right set of files to correctly update
what needs updating, but not recompile anything
unnecessarily

Automated recompilation

● Many software development tools automate this process for us:
looking at what’s been edited and going through the heirarchy
of #includes to figure out exactly what should be recompiled

● We can also build a set of rules that define the conditions under
which a file should be recompiled, and the instructions to use to
recompile it

● Makefiles are a type of file used to store such information, and
the make program is can then be used to recompile, e.g. if we
had created a correct makefile we could say “make progx” and
the make program would figure out what to do to update progx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

