
  

Safety and coding habits

● We want to develop sound coding habits to minimize 
possible future issues
● Bugs happen anyway: know it, be prepared for it, write code 
to minimize the run-time impact
● Many of the ideas discussed here may actually be part of 
the code standards for a project/team/organization 



  

Simplify, decompose, abstract

● Keep computations and logic statements simple and clear
● If you have a complex computation, break it up into 

smaller, clearer steps (that are easier to understand and 
much less likely to contain subtle bugs)

● Use clear comments and clear, informative identifiers
● When you change the code, be sure you keep comments 

up to date



  

Compilation

● Always use your compiler’s error checking options, e.g. for 
g++ use -Wall -Wextra (all warnings + extra warnings)

● All warnings reveal code weaknesses: when your compiler 
generates warnings, fix them

● If you get in the habit of ignoring streams of warnings 
because “those ones aren’t important”, then you’re going 
to miss buried warnings that are important (and other devs 
are going to think of your code as sloppy/error-prone)



  

Return values

● If there is a chance that a function will be unable to work correctly 
(e.g. if passed invalid data), include a return value (or reference 
parameter) to reflect the completion status

● Functions use return values for a reason, don’t ignore them
● When you call a function that returns a value, check that value to 

make sure it reflects that things worked correctly
● This also applies to pass-by-reference parameters – ensure that 

whatever was done to a ref parameter reflects a valid value/change



  

Prevent input errors

● When getting data from a user, try to maximize the chance 
the data will be entered correctly

● Give the user a clear prompt that reflects what they’re 
supposed to be entering, the input format, the units being 
used (miles vs kilometres vs furlongs etc), etc

● Pick an input mechanism that prevents errors (e.g. get a 
date through a calendar pop-up, not as plain text)



  

Check for errors asap

● Ideally, check input for errors as close to the time/point of 
entry as possible, giving the opportunity to fix the error or 
alter processing accordingly

● Minimize the impact of detected errors: e.g. if one field of a 
form is incorrect then don’t make them re-enter the entire 
form

● Remember that input from files or other programs also 
needs to be checked for potential errors



  

Anticipate common errors

● Check parameters for common issues (null pointers, out of 
range values, etc)

● Initialize variables when you declare them
● Consider bounds-checking for array accesses
● Consider checking for runaway recursion or infinite loops



  

Code standards

● We’ll discuss standards in detail later, but choosing and 
following reasonable standards can make it much easier to 
read, understand, and maintain your code and other 
developers’ code


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

