

Intro to bash scripting

● Here we’re talking about storing bash code in a file (script)
to be run when desired – you can also use this bash syntax
typed directly on command line too
● At start of bash scripts, need to include a line specifying
which interpretter is supposed to be used to read script, e.g.
#! /bin/bash
● Other than the hash bang (#!) above, comments in a bash
script start with # then go to the end of line (like C++ //)

Basic syntax

● More or less, any command you can type at the keyboard can be put on a line
of a bash script, and vice versa, when that line in the script is reached, that
command runs, e.g.

#! /bin/bash
g++ foo.cpp -o foo # compiles file foo.cpp in curr dir
ls -l foo* # lists files (in curr dir) beginning with foo

● In some ways bash is very flexible with whitespace, in others it is very
restrictive (details as they’re relevant)

● Note that brackets and commas not used when passing arguments (same later
when we get to calling functions)

Variables

● Global by default, have alphanumeric names (start with an alpha), and
automatically declared when first used, e.g. myvar=3

● Variables are all of type text string, since based on idea of typed user
input, but certain arithmetic operations permitted

● Picky whitespace: you cannot have space on either side of the =
● Variable names act somewhat like a reference, to use the content

stored in a variable we use $ to deref, e.g.

y=3 # assigns 3 to y
x=$y # lookup value of y and assign to x

Output with printf or echo

● To output text can simply use echo command,
automatically prints newline at end:

echo “value of variable x is $x”
● Alternatively, can use printf and \n’s, similar to C

printf “value of x is %x\n”, x

Input with read

● Can read line of user input into variables using read

read x y z
● Note that reads first word into x, second into y, and the

entire rest of the line into z
● Can use -p option to display a prompt then read, e.g.

read -p “enter some text” x
● Various other options also available

Command redirection

● All the command redirection we’ve discussed earlier still
works in bash scripts,

● e.g. to run program p, taking input from file1 and sending
output to file2:

p < file1 > file2
● e.g. to pipe p’s output into q, then q’s into filex:

p | q > filex

Here strings <<

● You can run a command and tell it to read its input from a string using
the here-string <<<, e.g.

mycommand <<< “blah blah blah”
● You can give it a string that spans multiple lines of input by specifying a

string to mark the end of the input, say LASTWORD, then using
<<LASTWORD to start, e.g.

mycommand <<LASTWORD
blah blah blah
and more blah blah blah
LASTWORD

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

