

Regular expressions

● Bash also provides a means of comparing strings against
patterns, with the =~ operator to do the comparison and some
slightly different syntax for describing the patterns
● This is often used when checking text (e.g. parameters) to
see if they have a valid format before processing them
● Generally we’ll specify our patterns inside single quotes

Basic sequences and matching

● The simplest form of pattern is just a specific string, e.g. ‘blah’, which
would match any string CONTAINING blah

● We use the =~ (inside [[]]) to test for a match, e.g.

Function containsblah() {
local param=$1
local pattern=’blah’
if [[$param =~ $pattern]] ; then
echo “$param contains $pattern”
fi

}

Specifying a set of characters, []

● We can use syntax like [xyz] to specify the character we
want can be any of the ones inside the square brackets, x,
y, or z in this case.

● We can also specify ranges, e.g. [a..z] matches any
character from a to z

● The ^ can be used to invert this, specifying anything
except the characters listed, e.g. [^1..9] means anything
except the digits 1 through 9

Repeating patterns

● We can specify that a pattern can repeat a certain number
(or range) of times

● (pattern)* specifies it can repeat 0 or more times
● (pattern)? specifies it can repeat 0 or 1 times
● (pattern){m,n} specifies it can repeat m to n times
● (pattern)+ specifies it can repeat 1 or more times

Matching the ends of a string

● Sometimes we want to specify a pattern must come at the
start of the string, this is done using ^pattern

● Sometimes we want to specify a pattern must come at the
end of the string, which is done using pattern$

● If we don’t include the ^ and/or $ then the pattern will
match any string containing the pattern, which may have
undesirable extra characters on either side of the pattern

OR with patterns (|)

● Sometimes we want to specify the next part of the string
could look like either one of two patterns, this can be done
using pattern1 | pattern2

Example: specifying a positive int

● Suppose we want a string that represents a positive
integer, with no leading 0’s

● The first character would be a 1..9, then there could be 0
or more characters that were each a 0..9

● There can’t be anything before or after the integer part, so
we need to use the ^ and $ around our pattern

● A valid pattern string would thus be ‘^[1..9][0-9]*$’

Example: specifying a time

● Suppose we want to specify that a string to represent a
time in the form hh:mm, in 24-hour format (say 00:00
through 23:59)

● If the first digit is a 0 or 1, the second digit can be 0-9, but
if the first digit is a 2 then the second digit can only be 0-3

● The third digit can be 0-5, the final digit can be 0-9
● ‘^(([01][0-3])|([2][0-9]))[:][0-5][0-9]$’

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

