

Command line arguments

● Bash scripts can accept command line arguments, i.e. you
can pass parameters to a script when you run it (e.g.
./myscript.sh hello 1 2 3 “and this” 27)
● Arguments are stored in an array named $@, and (as with
function parameters) the variables $1, $2 etc access the
parameters by position, $0 gives the script name, $# gives
the number of parameters

Iterating through the arguments

● We can iterate through the command line arguments using
loops (again, as we did with function parameters), e.g.

for arg in “$@”; do
echo “the next argument is $arg”

done

Shift and iteration

● “shift N” is also built in, and effectively removes the “front”
N elements from $@ (doesn’t change $0, and the default
value for N is 1)

● Here we’ll print and shift out one element at a time

while [$# -gt 0] ; do
echo “$1”
shift 1 # or just shift, since it defaults to 1

done

Passing the arguments

● When we run the script, each “word” on the command line
is treated as one argument, e.g. ./myscript 1 2 foo blah

● We can group multiple words together as one argument
with quotes. e.g. ./myscript.sh “arg one” argtwo

● Use single quotes if you’re passing special characters that
you don’t want bash to interpret before they reach the
script, e.g. ./myscript.sh ‘foo*’

	Slide 1
	Slide 2
	Slide 3
	Slide 4

