Inspection and Procedural Abstraction

Course theme: problem decomposition

* Achieve control of a complex system by
1. Dividing it into relatively independent parts.
2. Documenting the interdependencies that remain.

e Steps 1 and 2 are both important.

¢ The result of a well-designed and carefully documented decomposition is a system that is easier to
understand, nspect, test, and modify.

Procedural abstraction

* Abstraction: mtentionally ignoring certain aspects of a problem to simplify analysis and to focus attention
on the remaining aspects.

* Inprocedural abstraction the procedure implementation is ignored to focus attention on the service
provided by the procedure.

¢ Successtul procedural abstraction requires a precise and complete specification of the service offered by
the procedure.

Procedural abstraction in inspection

e Suppose that you are given specifications and implementations for the C functions r and G, and that r calls
G.

¢ To inspect c: show that ¢'s implementation behaves as required by its specification.

e To inspect r: show that r's implementation behaves as required by its specification. When reasoning about
the call to ¢ in F's implementation, refer to G's specification and not its implementation.

Example

¢ Use procedural abstraction to inspect the findLongestPlateau and removelLongestPlateau
functions shown below.

¢ First show that findLongestPlateau is correct or produce a list of the faults found.

* Then show that removeLongestPlateau is correct or produce a list of the faults found. When reasoning
about the callto findLongestPlateau, refer to its specification not its implementation.

* Note: A plateau in a sequence of numbers is a subsequence of one or more consecutive numbers of the
same value. In the sequence



s =<1,2,2,3,2,0,0,0>
there are many plateaus including

<2,2>
<3>

<0>

<0, 0>
<0,0,0>

In S, the longest plateau is <0,0,0>. If a sequence has two or more "longest plateaus" then longest
plateau refers to the leftmost one.

/* Assign to *pStart and *plLen the starting position and length

* of the longest plateau in a[0..alen-1].
*

* Assumed: a has at least alen elements and alLen > 0
*/
void findLongestPlateau(int a[],int alLen,int* pStart,int *pLen)

{
int tmpStart, tmpLen,i;

*pStart = 0;

*pLen = 1;
tmpStart = 0;
tmplen = 1;
for (1 = 0; 1 < alLen-1; i++) {
if (al[i] == ali+1l]) {
tmpLen++;
} else {

if (tmpLen >= *pLen) {
*pStart = tmpStart;
*pLen = tmplen;

}

tmpStart = i+1;

tmplen = 1;

/* Remove P, the longest plateau in a, shifting left all the elements
* to the right of P and decreasing *alen appropriately.
*

* Assumed: a has at least *alen elements and *alLen > 0
*/
void removelongestPlateau(int a[],int *alen)

{
int i,pStart,plen;

findLongestPlateau(a, *alen, &pStart, &pLen) ;

for (1 = 0; 1 < *alLen-pStart-pLen; i++) {
ali+pStart] = a[i+pStart+plLen];

int main ()



int 1i,xLen,x[1007];

/* longest plateau at end */

xLen = 4; x[0] = 1; x[1] = 2;
removelongestPlateau (x, &xLen) ;
for (1 = 0; 1 < xLen; 1i++)

printf ("$d\n",x[1]);
printf ("\n");

/* two longest plateaus */

xLen = 6; x[0] = 1; x[1] = 2;
removelLongestPlateau (x, &xLen) ;
for (1 = 0; 1 < xLen; 1i++)

printf ("$d\n",x[1]);

x[2]

x[2]



