
Inspection and Procedural Abstraction

Course theme: problem decomposition

Achieve control of a complex system by

1. Dividing it into relatively independent parts.

2. Documenting the interdependencies that remain.

Steps 1 and 2 are both important.

The result of a well-designed and carefully documented decomposition is a system that is easier to

understand, inspect, test, and modify.

Procedural abstraction

Abstraction: intentionally ignoring certain aspects of a problem to simplify analysis and to focus attention

on the remaining aspects.

In procedural abstraction the procedure implementation is ignored to focus attention on the service

provided by the procedure.

Successful procedural abstraction requires a precise and complete specification of the service offered by

the procedure.

Procedural abstraction in inspection

Suppose that you are given specifications and implementations for the C functions F and G, and that F calls

G.

To inspect G: show that G's implementation behaves as required by its specification.

To inspect F: show that F's implementation behaves as required by its specification. When reasoning about

the call to G in F's implementation, refer to G's specification and not its implementation.

Example

Use procedural abstraction to inspect the findLongestPlateau and removeLongestPlateau
functions shown below.

First show that findLongestPlateau is correct or produce a list of the faults found.

Then show that removeLongestPlateau is correct or produce a list of the faults found. When reasoning

about the call to findLongestPlateau, refer to its specification not its implementation.

Note: A plateau in a sequence of numbers is a subsequence of one or more consecutive numbers of the

same value. In the sequence

 S = <1,2,2,3,2,0,0,0>

there are many plateaus including

 <2,2>
 <3>
 <0>
 <0,0>
 <0,0,0>

In S, the longest plateau is <0,0,0>. If a sequence has two or more "longest plateaus" then longest
plateau refers to the leftmost one.

/* Assign to *pStart and *pLen the starting position and length
 * of the longest plateau in a[0..aLen-1].
 *
 * Assumed: a has at least aLen elements and aLen > 0
 */
void findLongestPlateau(int a[],int aLen,int* pStart,int *pLen)
{
 int tmpStart,tmpLen,i;

 *pStart = 0;
 *pLen = 1;
 tmpStart = 0;
 tmpLen = 1;
 for (i = 0; i < aLen-1; i++) {
 if (a[i] == a[i+1]) {
 tmpLen++;
 } else {
 if (tmpLen >= *pLen) {
 *pStart = tmpStart;
 *pLen = tmpLen;
 }
 tmpStart = i+1;
 tmpLen = 1;
 }
 }
}

/* Remove P, the longest plateau in a, shifting left all the elements
 * to the right of P and decreasing *aLen appropriately.
 *
 * Assumed: a has at least *aLen elements and *aLen > 0
 */
void removeLongestPlateau(int a[],int *aLen)
{
 int i,pStart,pLen;

 findLongestPlateau(a,*aLen,&pStart,&pLen);
 for (i = 0; i < *aLen-pStart-pLen; i++) {
 a[i+pStart] = a[i+pStart+pLen];
 }
}

int main()
{

 int i,xLen,x[100];

 /* longest plateau at end */
 xLen = 4; x[0] = 1; x[1] = 2; x[2] = 3; x[3] = 3;
 removeLongestPlateau(x,&xLen);
 for (i = 0; i < xLen; i++)
 printf("%d\n",x[i]);
 printf("\n");

 /* two longest plateaus */
 xLen = 6; x[0] = 1; x[1] = 2; x[2] = 2; x[3] = 3; x[4] = 3; x[5] = 1;
 removeLongestPlateau(x,&xLen);
 for (i = 0; i < xLen; i++)
 printf("%d\n",x[i]);
}

