
  

CSCI 161 review/prep for final

● hopefully we took the next step towards being better software 
developers and understanding the larger field of comp sci
● introduced many processes and tools to support development: version 
control (git), debuggers (gdb), modularity/abstraction, testing practices
● introduced programming design concepts: sorting/searching techniques, 
dynamic data structures and abstract data types (lists, stacks, queues, trees), 
object oriented programming, inheritance, static/dynamic binding, 
exceptions/handling
● expanded our knowledge of C++: syntax/semantics for classes, objects, 
inheritance, friend, try, throw, catch, templates, the STL



  

next steps...

● hopefully we've opened the door to a much wider range of CS topics, 
both in software development and the field in general

● second year courses expand the basic required skills and knowlege: 
systems (251), data structures (260), architecture (261), software 
engineering (265)

– note you can often take 310, 331, 370, 375 in second year

● third year courses focus on giving a solid foundation in each of the 
core areas of CS: interaction (310), web (311), theory (320), languages 
(330), OO (331), digital (355), operating systems (360), databases (370), 
systems analysis (375)

● fourth year courses dive deeply into specific specialized areas, with a 
different mix of topics offered each year



  

where I'll see you next...

courses I teach and hope to see you in!
● 265 Software engineering: getting way deeper into tools and 

techniques for larger/team projects

● 330 Programming languages: looking at very different styles of 
language and the design/implementation of languages

● 4xx Topics courses such as the compiler course or 
metaprogramming course

● 491: a full year course in which a student carries out a much larger 
independent research project under the supervision of one prof, with 
a review committee of two other profs



  

think about coop 307 next year

● coop involves (paid) work experience in the field, usually 3 
summers over the course of the degree

● really good experience both as career prep and 
academically (programming “for real”)

● the coop office helps with the job search and interview 
process, and reviews your work terms

● the coop prep course (307) can be taken in second year 
(basically one hour a week, outside regular class hours)

● before your first work term you essentially need CSCI 160, 
161, 162, 260, 265, 370 plus Math 121, 123



  

the final exam

● April 20th, 1-4pm, building 180 room 134 
● paper/pencil exam
● closed book, closed notes, no electronics
● you can bring one double-sided 8.5x11in. “cheat sheet” of your 

own creation (can be word processed, no font limits)
● likely 7-10 equally weighted questions
● questions can cover anything from the course: lectures, labs, 

quizzes, project
● there are a few specific topics I will not include: git, linux, make, 

gdb, file i/o, command line arguments, enums, typedefs, auto



  

Question styles

● I try to include a wide mix of question types, but common 
formats include

– write a program that ...

– write a function that...

– given a class definition, implement method(s)...

– given a set of class methods, write a function that uses them to ...

– discuss the advantages or disadvantages of ...

– explain how/why the following works ...

– explain why the algorithm below is O(N) (logN, N^2, etc)



  

Grading of questions

● be sure to check the feedback I've given for your quizzes so far, look 
for the kinds of situations where you've most often lost marks

● for paper/pencil programming questions I'm less concerned about 
getting the syntax perfect, and not at all concerned about layout or 
comments

● if you can't remember the syntax for something, or the name of a 
specific function you want to use then include a note for me

● for discussion/explanation questions, or anyplace I ask you to justify 
your answer it's crucial your explanation is clear and detailed (for a 
question worth 10-15% of your exam mark I'm probably looking for 
much more than just a 1 sentence answer)

● during the exam, if you're in doubt about what I want, ask me



  

Practice questions

● see the bottom of the exams page

     csci.viu.ca/~wesselsd/courses/csci161/exams.html

● the practice final posted there was prepped for this year's 
course, hopefully I'll have time to prep/post a second one

● two very old final exams (2013/12) are posted, but I've changed 
the style and content of the course since then, so don't take 
them as particularly representative



  

Key topic areas/advice

● going through the topics, identifying areas I'd typically focus on 
as final exam questions

● searching/sorting

– binary vs linear searches
● knowing these algorithms, their efficiency, and when they can be 

used are each very important

– we looked at several sorting algorithms
● not really interested in having you memorize/reproduce them, but do 

understand how/why they work, and how to reason about their 
efficiency (e.g. is it order N2, order NlogN, and why)

● I'll typically provide an outline or pseudocode for any specific desired 
algorithm, and may include some algorithms you haven't seen yet



  

Dynamic data structures

● remember your C++ syntax for working with pointers, 
structs, new/delete

● be able to write code to work with:
– linked lists (inserting and removing from front/back/middle, searching 

the list, printing the list, deallocating, etc)

– queues (lists where we insert at back, remove from front)

– stacks (customized operations: pop, push, top, isempty)

– binary search trees (inserting, searching, printing recursively using 
inorder traversals, deleting recursively using postorder traversals)



  

Classes and inheritance

● syntax for class, field, and method definitions and use

– use of public, protected, private

– constructors, destructors, copy/move constructors

– operator overloading, friend functions/classes

● inheritance, deriving one class from another
– inheriting as public/private/protected

– accessing inherited fields and methods 

● multiple inheritance and the problem of name clashes

● static vs dynamic binding

– virtual, override, final keywords, pure virtual methods/abstract base class



  

Templated classes

● code reuse
● templated functions (declaration/use)
● templated classes

– declaring the class and providing the templated methods

– creating/using instances of the class

● the standard template library (STL)
– creating/using instances of common classes

● list<string> L;  stack<int> S; etc



  

Exceptions/handling

● difference between exceptions and regular error handling
● using exception handling
● try, throw, catch
● throwing and catching different types of exception
● using a heirarchy of exception classes
● using the std::exception classes


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

