

More on types in C++

● useful additional types/features we can make use of:
● static local variables: maintain their values across calls
● typedefs: allow us to assign a name to a new data type
● enums: allow us to create named sets of integers or characters
● auto: gets the compiler to automatically determine the correct
data type to use in a variable declaration
● references: allow us to create an alias for a given data item

Static local variables

● local variables in functions are created and initialized 'fresh' with each
call to the function

● by preceeding a variable declaration with the keyword static it gets
moved to an external storage space, is initialized once, and maintains
updates to its value across function calls

void foo(int x)
{
 int i = 1;
 cout << i;
 i++;
}
// every call to foo starts with a new copy of i,
// always prints out 1

void foo()
{
 static int i = 1;
 cout << i;
 i++;
}
// in first call i is 1, prints 1
// in second call i is 2, prints 2
// in third call i is 3, etc

typedefs

● typedefs allow us to create and use a name for a data type
– can use the name when declaring variables, parameters, or

constants, instead of repeating the full type specification (can
be handy for complex types)

– can improve readability by using the type name to clarify the
purpose of variables, constants, parameters

● syntax is generally
– typedef theactualtype ourchosenname ;

typedefs for readability

● suppose we need to store/use temperatures in our
program, represented as floats

● we can create a new type, named temperature

 typedef float temperature;

● we can then create variables of that type, e.g.

 temperature x, y, z;

● they can be used just like any other floats, but the type
name makes their purpose a bit clearer

typedefs for multi-dim arrays

● suppose we have a two-dim array where R and C specify
the number of rows and columns

● we can create a new type name for it, e.g. Table:

 typedef float Table[R][C];

● we can now declare two dimensional arrays of this size
using table, e.g.

 Table t;

● we can then use the new 2d array normally, e.g.

 t[x][y] = 12;

enumerated types: enum

● used to create named subsets of integers or characters
● give a name for the subset, and a name to each individual value

 enum WeekDays { Mon=1, Tue=2, Wed=3, Thu=4, Fri=5 };

● the name of the subset can be used as a type

 WeekDays today, anotherDay;

● the names for the individual values can be used like constants

 if (today == Mon) {

 cout << “I do not like working on Mondays”;

 }

references (&)

● references can create an alias for an existing data item

 int x = 10;

 int &foo = x; // foo can be used as an alias for x

– references must be initialized at point of declaration

– safer than pointers since cannot be wild or null

– easier to use than pointers since no symbol needed to
dereference

● compiler implements using memory addresses/pointers
● used when we want a second named access to something (as

in pass by reference) without actually fully replicating the item

auto (compiler determines type)

● we can use auto instead of an explicit type when declaring
variables, the compiler infers correct type to use based on the
initialization of the variable

 auto x = foo(something); // determines type of x from the return type of foo

● upside: easier, can be more readable than repeating some complex
type specifications

● downside: can obscure what's happening when the reader (e.g.
someone maintaining/debugging the code) can't easily see what the
variable's type will really be

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

