

Doubly linked lists

● internal nodes have pointers to “previous” and “next” neighbours
in the list
● overall list maintains pointers to the first and last (or front and
back) nodes in the list
● first will consider a struct based approach (will do classes in ~2
weeks)
● use one struct to define the individual nodes
● use another struct for the overall list
● functions to insert, remove, search, print, delete, etc

Node struct

● various data fields for the information you want stored for
each node

● pointers to previous and next nodes in list (null when there
is no previous/next, i.e. for the nodes at either end)

struct node {
 float somedata;
 int moredata;
 node* prev;
 node* next;
};

List struct

● maintain info about the list as a whole
● might be simply pointers to the front/back nodes

struct List {
 node* front;
 node* back;
};

access functions

● most functions will simply be passed a List variable (by ref
if needed) and any needed data (e.g. value to search for)
– insert info into a list (at front? at back? at specific spot?)

– search a list for a specific value

– print a list
– remove from the list (from front? back? inside?)

– deallocate all the list content

initializing a list

● before we insert anything, to show list is empty, set
front/back to null

void initialize(List &L)
{
 L.front = NULL;
 L.back = NULL;
}

int main()
{
 List list1, anotherlist;
 initialize(list1);
 initialize(anotherlist);
 ...

creating a new node

● given the data values to use, create and initialize the node
● initialize next/prev to null by default?
● return pointer to the newly created node
node* create(int sd, float md)
{
 node* n = new node; // ** skipping error checking here for now
 n->somedata = sd; // using -> since we're accessing struct field through a pointer
 n->moredata = md;
 n->prev = NULL;
 n->next = NULL;
 return n;
}

inserting a node at front or back

● create the node using the data values given

● connect with the list's old front/back

● update the list's front/back
void insertFront(List &L, int sd, float md)
{
 node* n = create(sd, md);
 if (n != NULL) {
 if (L.front == NULL) { // list used to be empty
 L.front = n;
 L.back = n;
 } else { // general case
 n->next = L.front; // pointer from new node to old front
 L.front->prev = n; // pointer from old front back to n
 L.front = n; // update L to recognize new front of list
 }
}

removing from front/back

● reverse of insert: update pointers, front/back, delete
void removeFront(List &L)
{
 if (L.front != NULL) { // need to check since L might have been empty
 node* n = L.front; // get ptr to node we're removing
 L.front = n->next; // update front
 L.front->prev = NULL; // so new front knows nothing is before it
 delete n; // release the memory from the removed node
 }
}

searching for data values

● often have one function that finds a node with targetted value, returns
pointer to the node (other functions can call this as needed)

● example: search for first node with specific value in somedata field
node* search(List L, int sd) // not changing L, doesn't need to be pass-by-ref
{
 node* n = L.front; // search node-by-node from front to back
 while (n != NULL) {
 if (n->somedata == sd) {
 return n; // found it, leave now and return the ptr
 }
 n = n->next; // move on to next node in list
 }
 return NULL; // never found it, return NULL by default
}

lookup (using node* search)

● find node with a target somedata value (if any such node
exists) and look up its associated moredata value

● return true if found, false otherwise
bool lookup(List L, int sd, float &md) // md pass by ref so we can fill it in
{
 node* n = search(L, sd);
 if (n == NULL) {
 return false; // didn't find it
 } else {
 md = n->moredata;
 return true;
 }
}

find and remove a specific node

● find the node then chop it from the list
● could be at front, back, or somewhere inside

bool remove(List &L, int sd)
{
 node* n = search(L, sd);
 if (n == NULL) {
 return false; // no such node found
 }
 if (n == L.front) { // we're removing front node
 removeFront(L); // just use the removeFront we created earlier
 } else if (n == L.back) { // we're removing back node
 removeBack(); // assuming we created a removeBack like our removeFront
 }

find & remove continued...

● the general case, now we know it's an internal node
 else {
 // find the nodes before and after the node being removed
 node* before = n->prev;
 node* after = n->next;
 // have them bypass n
 before->next = after;
 after->prev = before;
 // deallocate the old node
 delete n;
 }
 return true; // successfully removed
}

insert into sorted list

● suppose we want to maintain sorted list, e.g. suppose we
keep values sorted by their somedata field (increasing
from front of list to back)

● instead of insert at front/back, find the right spot to insert
new nodes

● special cases for inserts at the ends
● general case, find the node that belongs before the new

node, get the node after that one, insert “between” them

insertSorted

bool insertSorted(List &L, int sd, float md)
{
 // create the node to be inserted, return false if fails
 node* n = create(sd, md);
 if (n == NULL) {
 return false;
 }

 // special case 1: list used to be empty
 if (L.front == NULL) {
 L.front = n;
 L.back = n;
 }

insertSorted, general case

 else { // general case, belongs between two existing nodes somewhere in list
 // find the node that belongs after our new node,
 // i.e. the first node whose somedata field is >= sd
 node* after = L.front;
 while (sd > after->somedata) {
 after = after->next;
 }
 // now find the node before that one
 node* before = after->prev;
 // and insert n between the two of them
 n->prev = before;
 n->next = after;
 before->next = n;
 after->prev = n;
 }
 return true; // done!
}

insertSorted continue

// special case 2: belongs at front, i.e. sd < old front element's somedata field
else if (sd < L.front->somedata) {
 n->next = L.front;
 L.front->prev = n;
 L.front = n;
}

// special case 3: belongs at back (sd > old back's somedata)
else if (sd > L.back->somedata) {
 n->prev = L.back;
 L.back->next = n;
 L.back = n;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

