

Bracket matching using stacks

● suppose we want to check if all the different bracket forms in our
program match up correctly: { }, (), []
● refer to { ([as opening brackets, })] as closing brackets
● for each bracket type the number of closing brackets must equal the
number of opening brackets
● order within a bracket type matters: can't have a closing bracket
before the thing it is meant to close, e.g.] [isn't valid
● order between bracket types matters: can't have a closing bracket
“cross the boundary” of another bracket type waiting to be closed, e.g.
not valid: ([)]

Idea for checking

● we can keep track of which brackets are currently open
and waiting to be closed, and what order they're in

● new opening brackets can come in at any time
● when a closing bracket is encountered we can match it

against the most recent open bracket, e.g.
– currently open: (({ ([

● if we see) or } it is invalid, since we have to close] first
● if it matches ok then we can throw away the opener, e.g.

– revised open list after seeing a] would be (({ (

stack-based algorithm

● have a stack of chars, will use to store opening brackets
● read input file one char at a time
● ignore characters that aren't brackets
● if we see an opening bracket we push it on the stack
● if we see a closing bracket we check against top of stack

– if they match then we pop the top open bracket off the stack
– otherwise it's an error (bracket mismatch)

● if the stack isn't empty when we reach the end of the file that's
an error (unmatched opening brackets still on the stack)

Example:

int main()
{
 int arr[3] = { 1, 2, 3 };
 float y = sqrt(arr[0]);
}

ignoring non-brackets,
sequence to process is
() { [] { } ([]) }

action sequence: updated stack with top on the right ->
push ((
match) against top, so pop
push { {
push [{ [
match] against top, so pop {
push { { {
match } against top, so pop {
push ({ (
push [{ ([
match] against top, so pop { (
match) against top, so pop {
match } against top, so pop
end of input, stack is empty, pass!

sample code: the stack interface

// assume a typical stack interface, pop/top/push return true iff successful

class stack {
 private:
 // could be array or list approach for a stack of chars

 public:
 stack();
 ~stack();
 bool pop();
 bool top(char &b);
 bool push(char b);
 int size();
};

sample code: main routine

// main gets the filename and handles opening/closing, checkbrackets does rest
int main() {
 ifstream infile;
 string fname;
 cout << “Enter the filename”;
 cin >> fname;
 infile.open(fname);
 if (infile.is_open()) {
 if (checkbrackets(infile)) {
 cout << “file passed: all brackets matched” << endl;
 } else {
 cout << “file failed” << endl;
 }
 infile.close();
 } else {
 cout << “Unable to open file “ << fname << endl;
 }
}

sample code: helper functions

● use three helper functions to check if given char is a
bracket, if it is opening bracket, if it is closing bracket

● bool isbracket(char b)
– return true if b is any of { [(}])

● bool isopener(char b)
– return true if b is any of { [(

● bool iscloser(char b)
– return true if b is any of }])

sample code: bracket checker

void bracketchecker(ifstream &infile) {
 stack brackets; // stack of opening brackets, initially empty
 // read each char in file, ignoring anything that isn't a bracket
 while (!infile.eof()) {
 char b;
 infile >> b;
 if (!infile.eof() && isbracket(b)) {
 if (!updatestack(b, brackets)) {
 return false; // quit now and return false, we've already detected a bracket issue
 }
 }
 }
 // reached end of file, see if anything leftover in stack
 if (brackets.size() > 0) {
 cout << “Error: “ << brackets.size() << “ unmatched brackets in the file” <, endl;
 return false;
 }
 return true;
}

sample code: check/update stack

bool updatestack(char b, stack brackets)
{
 // handle case where b is an opening bracket
 if (isopen(b)) {
 if (!brackets.push(b)) {
 cout << “Error: unable to finish processing, stack full?” << endl;
 return false;
 } else {
 return true;
 }
 }

 // continued on next slide

stack update continued

 else {
 char openB; // see which open bracket is on top of stack
 if (!brackets.top(openB)) {
 cout << “Error: found “ << b << “ when no brackets were open” << endl;
 return false;
 }
 // check for mismatch between opener and closer
 if (((openB == '{') && (b != '})) || ((openB == '[') && (b != ']')) || ((openB == '(') && (b != ')'))) {
 cout << “Error: tried to close “ << openB << “ with “ << b << endl;
 return false;
 }
 // otherwise the closing bracket matched the open one, pop the opener (should succeed)
 if (!brackets.pop()) {
 cout << “Error: unexpected failure to pop from a non-empty stack?” << endl;
 return false;
 }
 }
 return true; // processed b, no errors were detected
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

