

(pseudo)random number generators

● we often want to give our programs a level of unpredictability,
such as when playing a game against the computer
● this is achieved by having the computer generate seemingly
random values, then taking different action based on the value
● the generators are themselves computer programs, so their
actions and the values produced are, in fact, predictable with
sufficient background information, but the values appear random
to the people using them, hence the “pseudo-”random designation
● while I say “random” in future slides, keep in mind that it really is
pseudo-random

rand() in C++

● one random number generator available to us the the
rand() function from the cstdlib library

● when called, rand returns an apparently random non-
negative long integer, e.g.

● x = rand(); // x now holds some random integer
● of course, that means the value could be anything from 0

to 9223372036854775807 (if I typed that right)
● usually we want a random number in a smaller range...

seeding the generator

● every pseudorandom sequence is based off of a different
starting “seed” value used to initialize the generator

● if we don't seed the generator, or if we always use the same
seed, then the program will always generate the same
sequence

● an internal time is often used as a way to seed the generator,
so that it will be different every time we run the program

● we only need to seed the generator once at the start of the
program, then we can call the random number routine as often
as desired

srand and time

● srand(seed) is the function to seed rand's generator
● time(NULL) is a function call to get the internal time

#include <cstdlib>
#include <ctime>
#include <iostream>
using namespace std;

int main()
{
 // seed the generator
 srand(time(NULL));
 ... now for the rest of the program we can use rand as often as we want ...

rand() and modulo

● suppose we want a random number in the range 0..N, e.g.
– generate random value, r, from 0 to 3

– if r is 0 then the AI moves north

– else if r is 1 then the AI moves west,

– etc

● the easiest way to get a value in the desired range is to call
rand() then get the remainder after dividing by (N+1)

 int rval;

 rval = rand() % 5; // gives random int from 0 to 4

 rval = rand() % 101; // gives random int from 0 to 100

Example: flip a coin

// get user to guess result of a coin flip,
// will use 0 internally for tails, 1 for heads

cout << “Pick H for heads or T for tails” << endl;
char pick;
cin >> pick;

int coinflip = rand() % 2;
if ((pick == 'H') && (coinflip == 1)) {
 cout << “Correct, heads!” << endl;
} else if ((pick == 'T') && (coinflip == 0)) {
 cout << “Correct, tails!” << endl;
} else {
 cout << “Wrong!” << endl;
}

Example: pick a card

● will represent a card using two integer variables
// one int represents the suit

// (0=hearts, 1=spades, 2=diamonds, 3=clubs)

// one int represents the rank

// (1=ace, 2=2, ..., 10=10, 11=jack, 12=queen, 13=king)

// now generate a random card

int suit = rand() % 4;

int rank = 1 + rand() % 13

// added 1 to get rank in the range 1..13 instead of 0..12

random(M, N)

● suppose we want a function that returns a random integer
in the range M..N

● there are (1+N-M) possible values in the range, so we can
use M + (rand() % (1+N-M)) to get our desired value ...
verifying this is left as an exercise to the reader :)

// return a random integer in the range M..N
long random(long M, long N)
{
 return M + (rand() % (1 + N - M));
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

