
AS11M Assembler Guide Page 1

C SC 230
Computer Architecture and Assembly Language Programming

AS11M Assembler User Guide

1. Introduction
The AS11M assembler is a cross-assembler that runs on PCs and produces code for the
MC6811 microcontroller. It is available as free-ware from MSOE at the site
http://www.msoe.edu/eecs/ce/ceb/barnicks/courses/cs280/cs280.htm and locally at
http://gulf.uvic.ca/~csc230. AS11M is a DOS program that can be run under Windows.

2. Preparing the Assembly Language Program
The Assembly language source program should be prepared as a text file. The easiest
way to create a new text document is to position the mouse where you want the document
and right click. Drag down to New, slide the cursor over and then position to new Text
Document and click. Left click on the name and you can then type the name you want
for the document. Double-clicking on the document’s icon will open it using the
Notepad editor.

Be sure to save your program to drive H: which is your home directory.

3. Program Layout
A simple 6811 assembly language program is shown below. A line beginning with a ; is
a comment. Blank lines can be inserted as appropriate for clarity. The ; should appear in
the first character position.

; Pin toggle test program
; Author: Michael Miller
; Date: September 2, 1998

REGBAS EQU $1000
PORTB EQU $04

DELAY EQU 255

LDX #REGBAS
LDAA #0

LOOP STAA PORTB,X / set Port A to 0
LDY #DELAY

WAIT DEY
BNE WAIT / delay by counting
EORA #1 / flip bit 0 in ACCA
JMP LOOP
END

Code lines have four fields: label, opcode, operands and comment. The fields must be
separated by blanks or tabs. It is best to use tabs to align the fields.

AS11M Assembler Guide Page 2

When present the symbol in the label field should start in the first character position.
There must be whitespace at the start of a line with no label.

There should not be any blanks in the operand field. This is important. Some assemblers
allow blanks between operands but this one does not.

Anything after the first blank or tab following the operands is taken as a comment. In the
example above a / is used to delineate the comment. This is for clarity. It is not
necessary but it is a good idea.

4. Assembling the Program
Open the CSC 230 folder on the desktop. It contains three icons. The AS11M assembler
the WOOKIE – 6811 simulator and one called Drag and Drop. The simplest way to
assemble your program is to drag its icon onto the Drag and Drop icon in the CSC 230
folder. A window similar to the one shown in Fig. 1 will be produced.

Fig. 1

The assembler produces two files both with the same name as your source TXT file. One
is an LST file and is the program listing. The second is an S19 file. This file contains the
6811 code for your assembled program. Both files are by default put in your H:\
directory regardless of the location of your TXT file. If you know enough about
windows you can modify this. Easiest thing is to just accept that H:\ is where they go.

It is important that the S19 and LST files are in the same directory as that is what the
WOOKIE -–6811 simulator requires.

AS11M Assembler Guide Page 3

For interest, the contents of the S19 file produced for the program shown earlier are

S1170000CE10008600A70418CE00FF180926FC88017E0005A5
S9030000FC

The LST file is rather more meaningful. It shows the code produced for your program
associated with the original source code. Any error or warning messages would appear at
the appropriate position in the code. The LST file for the program above is as follows:

AS11M 01.05 Sun Sep 6, 1998 21:21 PIN_TEST.lst

0001 ; Pin toggle test program
0002 ; Author: Michael Miller
0003 ; Date: September 2, 1998
0004
0005 1000 REGBAS EQU $1000
0006 0004 PORTB EQU $04
0007
0008 00ff DELAY EQU 255
0009
0010 0000 ce 10 00 LDX #REGBAS
0011 0003 86 00 LDAA #0
0012 0005 a7 04 LOOP STAA PORTB,X / set Port A to 0
0013 0007 18 ce 00 ff LDY #DELAY
0014 000b 18 09 WAIT DEY
0015 000d 26 fc BNE WAIT / delay by counting
0016 000f 88 01 EORA #1 / flip bit 0 in ACCA
0017 0011 7e 00 05 JMP LOOP
0018 0014 END

Number of errors 0
Number of warnings 0

5. 6811 Assembly Language Rules
6811 assembly language programming will be illustrated in class, in the labs and there
are several examples in the text. This document covers some basics to get you started.

5.1 Numbers: Decimal numbers are written in the usual manner without a decimal point.
Hexadecimal numbers are preceded by a $. Binary numbers are preceded by a %. Note
that # denotes immediate addressing mode and does not precede every number in a
program.

5.2 Symbols: Choose meaningful symbols. They can contain letters, digits and the
character _ but must not start with a digit. Uppercase and lowercase letters are distinct.
Avoid using assembler opcodes as labels. The assembler doesn’t care, but you and the
marker will have great difficulty reading the program. Note that symbols are defined
throughout the entire assembly language program. There are no scoping rules as in high-
level languages.

AS11M Assembler Guide Page 4

5.3 Assembler Directives: An assembler directive has a layout similar to an executable
instruction but provides direction to the assembler rather than producing machine
language. The supported directives include:

ORG Set location counter to ORiGin.
ex: START ORG $C000
This allows the user to set the location counter to a specified value. This is commonly
used to ensure that code is assembled for the correct addresses which correspond to your
memory map. The above example sets the location counter to the address $C000. The
location counter is a value internal to the assembler that keeps track of where the code or
data associated with each instruction or directive is to be placed in memory.

FCC Form Constant Character string.
ex: STRING FCC 'A string of ASCII'
This causes the label to be assigned the address of the first letter in the string. The string
is stored in successive bytes with its ASCII value. The quotes are not part of the string.

FCB Form Constant Byte.
ex: TABLE FCB 0,1,$02,'A'
This causes the assembler to store the operands in successive 8-bit bytes. The operands
must be 8-bit values or single character constants. The values are separated by commas.

FDB Form Double Byte.
ex: CONSTS FDB 0000,$1234
Function is similar to that of FCB except 16-bit values are stored sequentially in memory.

EQU EQUate symbol to a value.
ex: LABEL EQU $1017
This causes the assembler to add the label to the symbol table and to equate it to the given
value. In this example, LABEL equates to $1017. The label cannot be redefined
elsewhere. The value must not be forward-referenced or undefined.

RMB Reserve Memory Bytes.
ex: VARS RMB 3
This directive allows the user to reserve a block of memory and associate a label to the
address of the block. It is used for variables, tables, etc. This example reserves the next
three sequential bytes for variables and associates the first address with the symbol
VARS.

BSZ Block Set Zero.
ex: BLK BSZ 10
This directive reserves memory and initializes it to 0. This example reserves 10
sequential bytes, sets them to 0, and associates the first address with the symbol BLK.

AS11M Assembler Guide Page 5

FILL.
ex: BLK FILL 10,15
This directive reserves memory. It reserves the number of bytes specified by the second
operand and fills each with the value given by the first operand. This example reserves
15 bytes all initialized to 10 and associates the symbol BLK with the address of the first
byte.

END End of assembler input.
ex: END
This causes the assembler to stop reading the file. All lines following this line are
comments. If you do not use an END directive the assembler reads until the end of file.

Note that a label is not mandatory in an assembly directive except for EQU. END should
not have a label. Also note that when a label is present, its value is the current value of
the assembler location counter except for the EQU directive which is the only one that
explicitly assigns a value to the specified label.

5.4 Assembler Arithmetic: The assembler supports simple arithmetic expressions
involving symbols and constants. For example:

LDAA #X+3

CMPA Y+5

The expression must be directly computable at assembly time and is used as the value of
the operand.

6. Comments and Corrections
This document is intended for use by students in C SC 230 and for others who might use
the AS11M assembler for educational work at UVic. Comments and corrections should
be sent to mmiller@csr.uvic.ca.

