Computer Science CSCI 261

Computer Architecture and Assembly Language

Dr. Peter Walsh
Department of Computer Science
Vancouver Island University
peter.walsh@viu.ca

Computer Architecture

- O Instruction Set Architecture (ISA)
 - abstract model of a computer
 - programmer's view of a computer
 - protocol that defines how a computer appears to a machine/assemble language programmer or a compiler
- ISA Components
 - memory model
 - instruction types
 - instruction codes

Memory Model

Memory and Register Layout

e.g. 16 bit address space -- 8 bit data

0000	03
0001	F7
FFFE	00
FFFF	FF

PC (16 bits)

0001

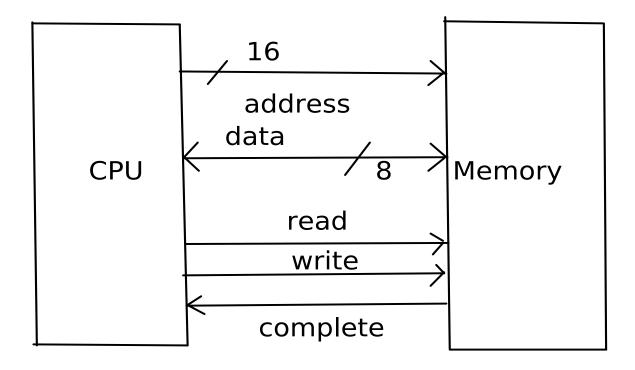
03

R0 (8 bits)

8 bit machine

Instruction Types

- Data Movement
 - e.g. load and store
- Data Transformation
 - e.g. add and sub
- Conditional
 - e.g. jnz (conditional jump instruction)
- Input/Output
 - e.g. ain (read an ascii character for a serial device)

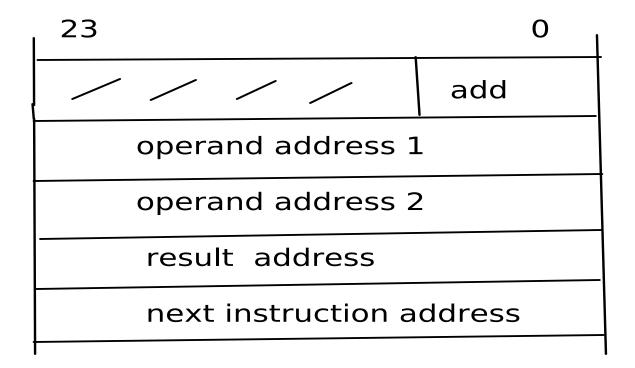

Instruction Codes

The following must be encoded in an instruction either explicitly or implicitly:

- which operation to perform
- where to find the operands
- where to put the results
- where to find the next instruction

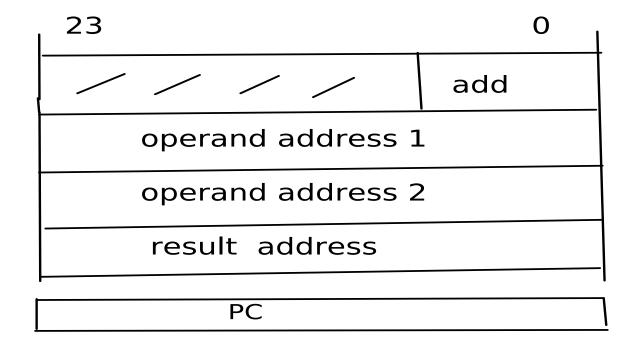
Memory Read/Write Cycle

• e.g 16 bit address space — 8 bit data



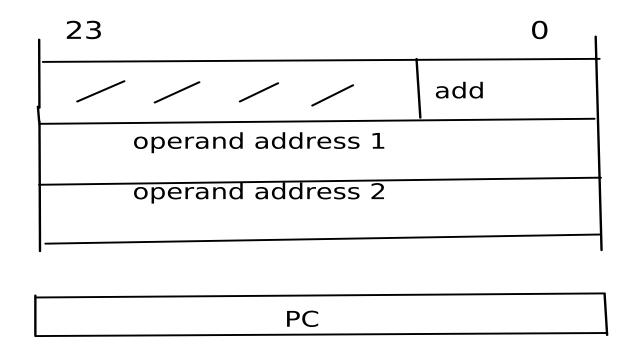
6: Computer Science CSCI 355 — Lecture 4

Machine Classification


Consider a hypothetical machine and its add instruction:

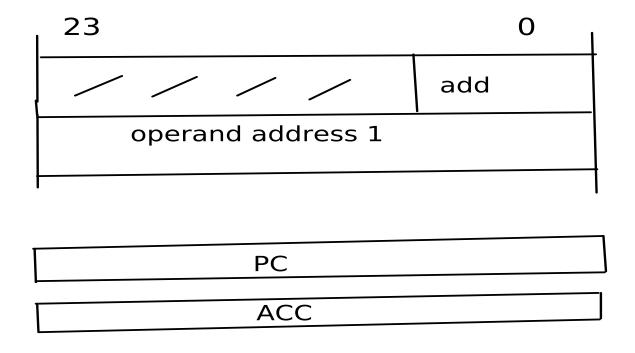
- 24 bit address space (3 bytes)
- 24 bit data (3 bytes)
- 128 instructions (7 bits rounded to 8)
- no programmer accessible registers

- Instruction Fetch
 - 5 memory read cycles
- Operand Fetch
 - 2 memory read cycles
- Result Write
 - 1 memory write cycle
- Total
 - 8 read/write cycles

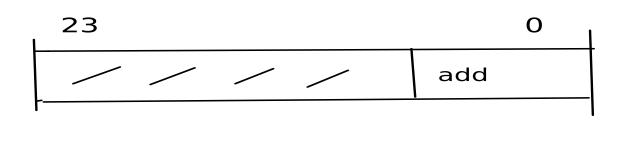

Include a register called a Program Counter (PC) that always points to the next instruction to be executed (except for branch instructions).

10: Computer Science CSCI 355 — Lecture 4

- Instruction Fetch
 - 4 memory read cycles
- Operand Fetch
 - 2 memory read cycles
- Result Write
 - 1 memory write cycle
- Total
 - 7 read/write memory cycles

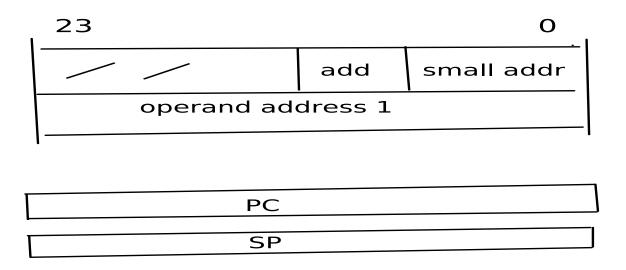

Store the result at the address of one of the operands.

12: Computer Science CSCI 355 — Lecture 4


- Instruction Fetch
 - 3 memory read cycles
- Operand Fetch
 - 2 memory read cycles
- Result Write
 - 1 memory write cycle
- Total
 - 6 memory read/write cycles

Include a register called an Accumulator (ACC) which becomes an instruction's implicit source and destination of data.

- Instruction Fetch
 - 2 memory read cycles
- Operand Fetch
 - 1 memory read memory cycle
- Total
 - 3 memory read/write cycles


Include a register called a Stack Pointer (SP) which points the first free position in memory (top) of a push-down stack. The stack becomes an instruction's implicit source and destination of data.

PC SP

- Instruction Fetch
 - 1 memory read cycles
- Operand Fetch
 - 2 memory read cycle
- Result Write
 - 1 memory write cycle
- Total
 - 4 memory read/write cycles

Include n general registers addressed by log_2n bit address (known as a small or half address). For example, 32 general registers would require a 5 bit half address.

- Instruction Fetch
 - 2 memory read cycles
- Operand Fetch
 - 1 memory read cycle
- Total
 - 3 memory read/write cycles

Architecture Comparison

- Trade-Offs
 - code size
 - code functionality
 - time to execute (memory read/write cycles)

All machines exhibit some features if all the machine types. Since 1980, machines tent to have a general register organization.