
✬

✫

✩

✪
1: Computer Science CSCI 251 — Lecture 4

Computer Science CSCI 251

Systems and Networks

Dr. Peter Walsh

Department of Computer Science

Vancouver Island University

peter.walsh@viu.ca

✬

✫

✩

✪
2: Computer Science CSCI 251 — Lecture 4

Process Model

© Program

• a executable program is a list of machine

language instructions and data

© Process

• a process is the memory space and settings in

which the program runs

© Shell

• a shell is a program that manages processes and

runs programs

• e.g., sh, bash, csh and zsh

✬

✫

✩

✪
3: Computer Science CSCI 251 — Lecture 4

Process Model cont.

© Shell Environment Variables

• shell environment variables contain

information about a process

© Process PID

• each process is assigned an integer

process identifier (PID)

© init Process

• the init process is the first process

created on-boot and is assigned PID 1

• all other processes are considered descendents

of the init process

✬

✫

✩

✪
4: Computer Science CSCI 251 — Lecture 4

Shell Alternatives

peter@cobra:~$ echo $SHELL

/bin/bash

peter@cobra:~$ ls -l /bin/bash

-rwxr-xr-x 1 root root 1183448 Jun 18 2020 /bin/bash

peter@cobra:~$ which sh

/usr/bin/sh

peter@cobra:~$ ls -l /usr/bin/sh

lrwxrwxrwx 1 root root 4 Jun 8 2020 /usr/bin/sh -> dash

✬

✫

✩

✪
5: Computer Science CSCI 251 — Lecture 4

Shell Alternatives cont.

peter@cobra:~$ which csh

/usr/bin/csh

peter@cobra:~$ ls -l /usr/bin/csh

lrwxrwxrwx 1 root root 21 Sep 23 18:18

/usr/bin/csh -> /etc/alternatives/csh

peter@cobra:~$ csh

cobra:~% echo $shell

/bin/tcsh

cobra:~% ls -l /bin/tcsh

-rwxr-xr-x 1 root root 447896 Jul 16 2019 /bin/tcsh

✬

✫

✩

✪
6: Computer Science CSCI 251 — Lecture 4

Shell Commands

© bash

• echo $SHELL # show shell path

• echo $PPID # show parent process PID

© csh

• echo $shell # show shell path

© Common to bash and csh

• ps aux # show processes for all users

• ps -C "command" # search for a process by

its "command" name

• echo $$ # show current process PID

• top # show process statistics

• kill -9 PID # kill a process

✬

✫

✩

✪
7: Computer Science CSCI 251 — Lecture 4

Shell Scripts
#!/usr/bin/sh

dirBack

#.dirBak.sh dir (relative to /home/peter)

[! -d "/home/peter/$1"] &&
echo "Directory /home/peter/$1 not found" && exit
rm -f p.tar
tar cvf p.tar /home/peter/$1
fn2=$(date ’+%Y-%m-%d-%H-%M-%S’)
fn1=$(echo $1 | sed -e ’s/\//-/g’)
fn=$fn1"+"$fn2
#fn=$(date +%F)
ex=".tar"
fd="/home/peter/Backups/"
target=fdfn$ex
echo "Moving tar file to pletus:~peter/Backups/"
scp -r p.tar peter@pletis:"$target"
rm -f p.tar

✬

✫

✩

✪
8: Computer Science CSCI 251 — Lecture 4

Shell Scripts cont.

#!/usr/bin/csh

script to forward attachments to otter students

#./batchEmail.csh

set PREFIX = /home/peter/Courses/261/Submissions/Task6/graded
set SOL=task6.pdf.pdf

foreach F ($PREFIX/*)
if ((${F:t} != pwalsh) && (${F:t} != Report)) then

if (-e "$PREFIX/${F:t}/$SOL") then
echo Exists
mpack -s "CSCI 261 task6" -a $PREFIX/${F:t}/$SOL
${F:t}@otter.csci.viu.ca

else
echo PROBLEM with ${F:t}

endif
endif

end

✬

✫

✩

✪
9: Computer Science CSCI 251 — Lecture 4

Process Creation (API)

© Fork

• fork creates a child process that is a clone

of its parent

© Exec

• ”boots” the child with a different

executable image

© Wait

• waits for a child to complete

✬

✫

✩

✪
10: Computer Science CSCI 251 — Lecture 4

Fork and Exec Example

#!/usr/bin/perl

Here is an example of a program segment which forks and execs
"ls -l > dir.out":

if (($pid = fork()) == 0) { # I am the child
exec ("ls -l > dir.out");
print ("Could not exec: errno is $!\n");
exit (0);

} elsif ($pid > 0) { # I am the parent
print ("Parent PID = ", $$, "\n");
print ("Child PID = ", $pid, "\n");
$dead_child = wait;
print ("Dead Child PID = ", $dead_child, "\n");

} else {
print ("Could not fork: errno is $!\n");

}

✬

✫

✩

✪
11: Computer Science CSCI 251 — Lecture 4

Fork and Exec Example cont.

Fork returns the child pid to the parent process, 0 to the child
process, or undef if the fork is unsuccessful.

Wait waits for a child process to terminate and returns the pid of
the deceased process, or -1 if there are no child processes.

In Unix, a process can have children created by fork or similar
system calls. When the child terminates a SIGCHLD signal is sent
to the parent.

When a child process terminates before the parent has called wait,
the kernel retains some information about the process to enable
its parent to call wait later. Because the child is still
consuming system resources but not executing it is known as
zombie process.

✬

✫

✩

✪
12: Computer Science CSCI 251 — Lecture 4

Unexpected Events

Exceptions and interrupts are unexpected events that dis-

rupt the normal flow of instruction execution.

© Interrupt

• generated by an external hardware device (typically)

• adjudicated by the processor hardware

• handled by the kernel

© Exception

• generates an internal signal

• adjudicated by the kernel

• handled by processes

• form of inter process communication (IPC)

✬

✫

✩

✪
13: Computer Science CSCI 251 — Lecture 4

Signals

© Command Line Examples

• CTRL-C, CTRL-Z, kill -9 PID

© Process options on receipt of a signal

• ignore the signal

• terminate with/without a core dump

• call a handler function

Name Default Action Description ID
SIGINT Quit Interrupt 2
SIGKILL Dump Kill 9
SIGCHLD Ignore Child status change 20

kill -l will generate the comple list of SIGNALS

✬

✫

✩

✪
14: Computer Science CSCI 251 — Lecture 4

Signal Handler Example

#!/usr/bin/perl

Here is an example of a program segment which

catches the signal INT

$SIG{INT} = sub {leaveScript();};

sub leaveScript {

print("\nShutdown Now !!!!! \n");

exit();

}

while (1) {

}

✬

✫

✩

✪
15: Computer Science CSCI 251 — Lecture 4

Daemons and Jobs

© Daemon

• a process that starts at system startup

© Job

• program that is started interactively by the shell

• shell can run one job in the foreground and

many jobs in the background

• jobs can be suspended (SIGSTOP)

• jobs can be restored (SIGCONT)

• jobs are identified by their job ID (JID)

✬

✫

✩

✪
16: Computer Science CSCI 251 — Lecture 4

Foreground/Background Examples

sleep 5 job runs in foreground and terminates in 5 sec

sleep 5& job runs in background and terminates in 5 sec

sleep 5

CTRL-Z job is suspended to the background

fg JID brings job JID back to the foreground

bg JID jobs previously suspended in the background

can be started in the background

(job receives a SIGCONT signal)

