Artificial Intelligence

Perception — Speech/Language Understanding and Vision

Outline

- Speech Recognition
- Language Processing
- Language Understanding
- Vision

Communication

- "Classical" view (pre-1953): language consists of sentences that are true/false (compare with logic)
- "Modern" view (post-1953): language is a form of action
- Why? it can be used to change the actions of the agents.

Communication on the Receiving End

- Perception Agent perceives speech W in context C
- Analysis Agent infers possible meanings P₁, ... P_n
- Disambiguation Agent infers intended meaning P_i
- Incorporation Agent incorporates P_i

Speech Recognition

- Speech recognition is the process of recognizing and translating the spoken language to text.
- Speech recognition technologies benefit from knowledge and research in the computer science, linguistics and computer engineering fields.
- Speech recognition has a long history with several waves of major innovations.
 - speech as probabilistic inference What is the most likely word sequence, given the speech signal that is noisy, variable, and ambiguous?
 - Hidden Markov Models a speech signal can be viewed as a piecewise stationary signal or a short-time stationary signal.
 - Deep learning

Language Processing

- Stop-word removal
- Part-of-speech tagging
- Tokenization
- Parsing
- ...
- Aim to shape language sentences into a set format and process the text in a literal sense.

Language Understanding

- Interpret the language
- Derive meaning
- Identify context
- Draw insights
- ...
- Aim to extract the context and intent, or to understand what was meant from the text.

Real Language

- Real human languages provide many problems for natural language processing and understanding:
 - ambiguity
 - anaphora
 - indexicality
 - vagueness
 - discourse structure
 - metonymy
 - metaphor
 - noncompositionality

Vision

- Agent's visual perception of the world is an image or video (sequence of images):
 S = g(W), where g = graphics
- Vision seeks to gain high level and meaningful information from images or videos.
- Can we do vision as inverse graphics?
 W = g⁻¹(S)
- Problem: massive ambiguity!

Slightly Better Approach

- Luckily, we don't need to completely recover the exact world scene. Just extract information needed for:
 - navigation
 - manipulation
 - recognition/identification
- Bayesian inference of world configurations: $P(W|S) = \frac{P(S|W) \times P(W)}{P(S)}$ where P(W) is the "prior knowledge of A world"
- Compare $P(S | W_1) \times P(W_1)$ and $P(S | W_2) \times P(W_2)$ to see which world is more likely given the image S.
- Problems: how do we get the prior knowledge of all possible worlds?

Image Processing and Pattern Recognition

- Image Processing
 - Input and output are both images
 - including operations such as image noise reduction, contrast enhancement, image sharpening, edge detection, etc.
- Segmentation and Recognition
 - Input are images, while output are attributes extracted from the images
 - Object Recognition
- High-level Processing/Recognition
 - "Making sense" of an ensemble of recognized objects
 - Image analysis
 - Computer vision

Learning

- Treat object recognition as a classification problem
- Solve it using learning techniques, especially deep learning algorithms
- Advantage:
 - computationally feasible
 - quite accurate when trained with good quality dataset
- Disadvantage:
 - Biased with only pre-set class labels
 - Disastrous when trained with skewed dataset

Summary

- Both speech/language understanding and vision are hard — noise, ambiguity, complexity
- Prior knowledge is essential to constrain the problems in both fields