Artificial Intelligence

Inference in First Order Logic

Outline

- Reducing first-order inference to propositional inference
- Unification
- Generalized Modus Ponens
- Forward chaining
- Backward chaining
- Resolution

Universal instantiation (UI)

 Every instantiation of a universally quantified sentence is entailed by it:

 $\forall v a \models Substitute(\{v/g\}, a)$

for any variable v and ground term g

Existential instantiation (EI)

- For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:
 ∃v α ⊨ Substitute({v/k}, α)
- k is called Skolem constant

FOL Inference By Reduction

- Reduction to propositional logic
 - Instantiating the universal sentence in all possible ways
 - Give each ground term sentence a proposition symbol
- Every FOL KB can be propositionalized so as to preserve entailment
- A ground sentence is entailed by new KB iff entailed by original KB
- Idea: propositionalize KB and query, apply resolution, return result
- Problem:
 - with function symbols, there are infinitely many ground terms, such as Father(Father(John)))
 - generate lots of irrelevant sentences

Reduction

• Theorem: If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB. (by Herbrand, 1930)

Idea: For n = 0 to ∞ do create a propositional KB by instantiating with depth-n terms see if α is entailed by this KB

- Problem: works if α is entailed, loops if α is not entailed
- Theorem: Entailment for FOL is semi-decidable, that is, algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every non-entailed sentence. (by Turing, 1936, Church, 1936)

Unification

- A process of making two first order logic sentences with universal quantified variables identical by finding a substitution.
- Unify(α , β) = θ if $\alpha\theta = \beta\theta$
- Transaction(Toys, x, John) & Transaction(Toys, Teddy, John), $\theta = \{x/Teddy\}\}$
- Transaction(Toys, x, y) & Transaction(z, Teddy, John), $\theta = \{x/Teddy, y/John, z/Toys\}\}$
- Transaction(Seller(x), x, John) & Transaction(y, Teddy, John), θ = {x/Teddy, y/ Seller(Teddy)}}
- Transaction(Toys, x, John) & Transaction(Toys, Teddy, x), θ = {fail}, but Standardizing apart eliminates overlap of variables, e.g., Transaction(Toys, Teddy, x₁₇) θ = {x/Teddy, x₁₇/John}
- Transaction(x, Teddy, x) & Transaction(Toys, Teddy, John) = {fail}

Most General Unifier

- Transaction(Toys, x, y) & Transaction(Toys, Teddy, z), θ = {x/Teddy, y/z } or θ = {x/Teddy, y/John, z/John} or θ = {x/Teddy, y/Mary, z/Mary}
- The first unifier is more general than the rest.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.
- MGU = { x/Teddy, y/z }

The unification algorithm

function UNIFY(x, y, θ) returns a substitution to make x and y identical inputs: x, a variable, constant, list, or compound y, a variable, constant, list, or compound θ , the substitution built up so far if θ = failure then return failure else if x = y then return θ else if VARIABLE?(x) then return UNIFY-VAR(x, y, θ) else if VARIABLE?(y) then return UNIFY-VAR(y, x, θ) else if COMPOUND?(x) and COMPOUND?(y) then return UNIFY(ARGS[x], ARGS[y], UNIFY(OP[x], OP[y], θ)) else if LIST?(x) and LIST?(y) then **return** UNIFY(REST[x], REST[y], UNIFY(FIRST[x], FIRST[y], θ)) else return failure

The unification algorithm

function UNIFY-VAR(var, x, θ) returns a substitution inputs: var, a variable x, any expression θ , the substitution built up so far if $\{var/val\} \in \theta$ then return UNIFY(val, x, θ) else if $\{x/val\} \in \theta$ then return UNIFY(var, val, θ) else if OCCUR-CHECK?(var, x) then return failure else return add $\{var/x\}$ to θ

Generalized Modus Ponens (GMP)

• $p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q) \models q\theta$

where $p_i'\theta = p_i\theta$ for all i from 1 to n

 Example: Product(Teddy), Sells(Toys, Teddy), Transaction(Toys, Teddy, Mary), Transaction(x, y, z) ⇒ Owns(z, y) ⊧ Owns(Mary, Teddy)

θ is {x/Toys, y/Teddy, z/Mary}

- GMP can be used with KB of definite clauses (exactly one positive literal)
- All variables assumed universally quantified. (Existentially quantified variables are replaced by Skolem constants.)

Soundness of GMP

Need to show that
 p₁', ..., p_n', (p₁ ∧ ... ∧ p_n ⇒ q) ⊧ qθ

provided that $p_i'\theta = p_i\theta$ for all i from 1 to n

- Lemma: For any sentence p, we have $p \models p\theta$ by UI
- Proof:
 - $(p_1 \land \ldots \land p_n \Rightarrow q) \models (p_1 \land \ldots \land p_n \Rightarrow q)\theta \models (p_1\theta \land \ldots \land p_n\theta \Rightarrow q\theta)$
 - $p_1', \ldots, p_n' \models p_1' \land \ldots \land p_n' \models p_1' \theta \land \ldots \land p_n' \theta$
 - From previous two steps, qθ follows by ordinary Modus Ponens

Forward chaining algorithm

```
function FOL-FC-ASK(KB, \alpha) returns a substitution or false
   repeat until new is empty
         new \leftarrow \{\}
         for each sentence r in KB do
               (p_1 \land \ldots \land p_n \Rightarrow q) \leftarrow \text{STANDARDIZE-APART}(r)
               for each \theta such that (p_1 \land \ldots \land p_n)\theta = (p'_1 \land \ldots \land p'_n)\theta
                                for some p'_1, \ldots, p'_n in KB
                     q' \leftarrow \text{SUBST}(\theta, q)
                   if q' is not a renaming of a sentence already in KB or new then do
                           add q' to new
                          \phi \leftarrow \text{UNIFY}(q', \alpha)
                           if \phi is not fail then return \phi
         add new to KB
   return false
```

Properties of forward chaining

- Sound and complete for first-order definite clauses
- Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations
- May not terminate in general if α is not entailed
- This is unavoidable: entailment with definite clauses is semi-decidable

Efficiency of forward chaining

- Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration k-1
 - match each rule whose premise contains a newly added positive literal
- Matching itself can be expensive:
 - Database indexing allows O(1) retrieval of known facts
 - e.g., query Missile(x) retrieves Missile(M1)
- Forward chaining is widely used in deductive databases

Backward chaining algorithm

```
function FOL-BC-ASK(KB, goals, \theta) returns a set of substitutions

inputs: KB, a knowledge base

goals, a list of conjuncts forming a query

\theta, the current substitution, initially the empty substitution { }

local variables: ans, a set of substitutions, initially empty

if goals is empty then return {\theta}

q' \leftarrow \text{SUBST}(\theta, \text{FIRST}(goals))

for each r in KB where STANDARDIZE-APART(r) = (p_1 \land \ldots \land p_n \Rightarrow q)

and \theta' \leftarrow \text{UNIFY}(q, q') succeeds

ans \leftarrow \text{FOL-BC-ASK}(KB, [p_1, \ldots, p_n | \text{REST}(goals)], \text{COMPOSE}(\theta, \theta')) \cup ans

return ans
```

SUBST(COMPOSE(θ_1, θ_2), p) = SUBST(θ_2 , SUBST(θ_1, p))

Properties of backward chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
 - fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
 - fix by using caching of previous results (extra space)
- Widely used for logic programming

Resolution

- Full first-order version: $p_1 \lor \cdots \lor p_k, \ q_1 \lor \cdots \lor q_n$ $\models (p_1 \lor \cdots \lor p_{i-1} \lor p_{i+1} \lor \cdots \lor p_k \lor q_1 \lor \cdots \lor q_{j-1} \lor q_{j+1} \lor \cdots \lor q_n)\theta$ where Unify $(p_i, \neg q_j) = \theta$.
- The two clauses are assumed to be standardized apart so that they share no variables.
- For example,
 ¬Healthy(x) ∨ Happy(x), Healthy(John) ⊨ Happy(John)

 with θ = {x/John}
- Inference: Apply resolution steps to CNF(KB $\land \neg \alpha)$ to see whether it is unsatisfiable.
- Complete for FOL

Conversion to CNF (I)

- Everyone who loves all animals is loved by someone:
 ∀x (∀y Animal(y) ⇒ Loves(x, y)) ⇒ (∃y Loves(y, x))
- Eliminate bi-conditionals and implications
 ∀x (¬∀y ¬Animal(y) ∨ Loves(x, y)) ∨ (∃y Loves(y, x))
- Move ¬ inwards: ¬∀x p = ∃x ¬p, ¬ ∃x p = ∀x ¬p
 ∀x (∃y ¬(¬Animal(y) ∨ Loves(x, y))) ∨ (∃y Loves(y, x))
 ∀x (∃y ¬¬Animal(y) ∧ ¬Loves(x, y)) ∨ (∃y Loves(y, x))
 ∀x (∃y Animal(y) ∧ ¬Loves(x, y)) ∨ (∃y Loves(y, x))

Conversion to CNF (II)

- Standardize variables: each quantifier should use a different one ∀x (∃y Animal(y) ∧ ¬Loves(x, y)) ∨ (∃z Loves(z, x))
- Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables: ∀x (Animal(F(x)) ∧ ¬Loves(x,F(x))) ∨ Loves(G(x),x)
- Drop universal quantifiers: (Animal(F(x)) ∧ ¬Loves(x,F(x))) ∨ Loves(G(x),x)
- Distribute ∨ over ∧ :

 $(Animal(F(x)) \lor Loves(G(x),x)) \land (\neg Loves(x,F(x)) \lor Loves(G(x),x))$