
Artificial Intelligence
Inference in First Order Logic
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Outline
• Reducing first-order inference to propositional inference


• Unification


• Generalized Modus Ponens


• Forward chaining


• Backward chaining


• Resolution
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Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is 
entailed by it: 
∀v α ⊧ Substitute({v/g}, α) 
for any variable v and ground term g
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Existential instantiation (EI)

• For any sentence α, variable v, and constant symbol k 
that does not appear elsewhere in the knowledge base: 
∃v α ⊧ Substitute({v/k}, α)


• k is called Skolem constant
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FOL Inference By Reduction
• Reduction to propositional logic


• Instantiating the universal sentence in all possible ways 


• Give each ground term sentence a proposition symbol


• Every FOL KB can be propositionalized so as to preserve entailment


• A ground sentence is entailed by new KB iff entailed by original KB


• Idea: propositionalize KB and query, apply resolution, return result


• Problem: 


• with function symbols, there are infinitely many ground terms, such as 
Father(Father(Father(John)))


• generate lots of irrelevant sentences
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Reduction
• Theorem: If a sentence α is entailed by an FOL KB, it is entailed 

by a finite subset of the propositionalized KB. (by Herbrand, 1930)


• Idea:  
For n = 0 to ∞ do 
    create a propositional KB by instantiating with depth-n terms 
    see if α is entailed by this KB


• Problem: works if α is entailed, loops if α is not entailed


• Theorem: Entailment for FOL is semi-decidable, that is, algorithms 
exist that say yes to every entailed sentence, but no algorithm 
exists that also says no to every non-entailed sentence. (by 
Turing, 1936, Church, 1936)
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Unification
• A process of making two first order logic sentences with universal quantified 

variables identical by finding a substitution.


• Unify(α,β) = θ if αθ = βθ 


• Transaction(Toys, x, John)  & Transaction(Toys, Teddy, John), θ = {x/Teddy}}


• Transaction(Toys, x, y) & Transaction(z, Teddy, John), θ = {x/Teddy, y/John, z/Toys}}


• Transaction(Seller(x), x, John)  & Transaction(y, Teddy, John), θ = {x/Teddy, y/
Seller(Teddy)}}


• Transaction(Toys, x, John) & Transaction(Toys, Teddy, x), θ = {fail}, but 
Standardizing apart eliminates overlap of variables, e.g., Transaction(Toys, Teddy, x17) 
θ = {x/Teddy, x17/John}


• Transaction(x, Teddy, x) & Transaction(Toys, Teddy, John) = {fail}
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Most General Unifier
• Transaction(Toys, x, y) & Transaction(Toys, Teddy, z), 

θ = {x/Teddy, y/z }  
or θ = {x/Teddy, y/John, z/John} 
or θ = {x/Teddy, y/Mary, z/Mary}


• The first unifier is more general than the rest.


• There is a single most general unifier (MGU) that is unique 
up to renaming of variables.


• MGU = { x/Teddy, y/z } 
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The unification algorithm



The unification algorithm



Generalized Modus Ponens 
(GMP)

• p1', p2', … , pn', ( p1 ⋀ p2 ⋀ … ⋀ pn ⇒ q) ⊧ qθ 

where pi'θ = piθ for all i from 1 to n 


• Example: 
Product(Teddy), Sells(Toys, Teddy), 
Transaction(Toys, Teddy, Mary), 
Transaction(x, y, z) ⇒ Owns(z, y) ⊧ Owns(Mary, Teddy) 

θ is {x/Toys, y/Teddy, z/Mary}


• GMP can be used with KB of definite clauses (exactly one positive literal)


• All variables assumed universally quantified. 
(Existentially quantified variables are replaced by Skolem constants.)
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Soundness of GMP
• Need to show that  

p1', …, pn', (p1 ⋀ … ⋀ pn ⇒ q) ⊧ qθ 

provided that pi'θ = piθ for all i from 1 to n


• Lemma: For any sentence p, we have p ⊧ pθ by UI


• Proof:


• (p1 ⋀ … ⋀ pn ⇒ q) ⊧ (p1 ⋀ … ⋀ pn ⇒ q)θ ⊧ (p1θ ⋀ … ⋀ pnθ ⇒ qθ)


• p1', …, pn' ⊧ p1' ⋀ … ⋀ pn' ⊧ p1'θ ⋀ … ⋀ pn'θ 


• From previous two steps, qθ follows by ordinary Modus Ponens
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Forward chaining algorithm
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Properties of forward 
chaining

• Sound and complete for first-order definite clauses


• Datalog = first-order definite clauses + no functions


• FC terminates for Datalog in finite number of iterations


• May not terminate in general if α is not entailed


• This is unavoidable: entailment with definite clauses is 
semi-decidable
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Efficiency of forward 
chaining

• Incremental forward chaining: no need to match a rule on 
iteration k if a premise wasn't added on iteration k-1


• match each rule whose premise contains a newly added 
positive literal


• Matching itself can be expensive:


• Database indexing allows O(1) retrieval of known facts


• e.g., query Missile(x) retrieves Missile(M1)


• Forward chaining is widely used in deductive databases 
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Backward chaining 
algorithm

SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2, SUBST(θ1, p)) 
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Properties of backward 
chaining

• Depth-first recursive proof search: space is linear in size of 
proof


• Incomplete due to infinite loops


• fix by checking current goal against every goal on stack


• Inefficient due to repeated subgoals (both success and 
failure)


• fix by using caching of previous results (extra space)


• Widely used for logic programming
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Resolution
• Full first-order version: 

p1 ⋁ ··· ⋁ pk,  q1 ⋁ ··· ⋁ qn 
 ⊧ (p1 ⋁ ··· ⋁ pi-1 ⋁ pi+1 ⋁ ··· ⋁ pk ⋁ q1 ⋁ ··· ⋁ qj-1 ⋁ qj+1 ⋁ ··· ⋁ qn)θ 
where Unify(pi, ￢qj) = θ.


• The two clauses are assumed to be standardized apart so that they share no 
variables.


• For example, 
￢Healthy(x) ⋁ Happy(x), Healthy(John) ⊧ Happy(John) 
with θ = {x/John}


• Inference: Apply resolution steps to CNF(KB ⋀ ￢α) to see whether it is 
unsatisfiable.


• Complete for FOL
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Conversion to CNF (I)
• Everyone who loves all animals is loved by someone: 

∀x (∀y Animal(y) ⇒ Loves(x, y)) ⇒ (∃y Loves(y, x))


• Eliminate bi-conditionals and implications 
∀x (￢∀y ￢Animal(y) ⋁ Loves(x, y)) ⋁ (∃y Loves(y, x))


• Move ￢ inwards: ￢∀x p ≡ ∃x ￢p,  ￢ ∃x p ≡ ∀x ￢p 
∀x (∃y ￢(￢Animal(y) ⋁ Loves(x, y))) ⋁ (∃y Loves(y, x)) 
∀x (∃y ￢￢Animal(y) ⋀ ￢Loves(x, y)) ⋁ (∃y Loves(y, x)) 
∀x (∃y Animal(y) ⋀ ￢Loves(x, y)) ⋁ (∃y Loves(y, x)) 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Conversion to CNF (II)
• Standardize variables: each quantifier should use a different one 

∀x (∃y Animal(y) ⋀ ￢Loves(x, y)) ⋁ (∃z Loves(z, x))


• Skolemize: a more general form of existential instantiation. 
Each existential variable is replaced by a Skolem function of the 
enclosing universally quantified variables: 
∀x (Animal(F(x)) ⋀ ￢Loves(x,F(x))) ⋁ Loves(G(x),x)


• Drop universal quantifiers: 
(Animal(F(x)) ⋀ ￢Loves(x,F(x))) ⋁ Loves(G(x),x)


• Distribute ⋁ over ⋀ : 
(Animal(F(x)) ⋁ Loves(G(x),x)) ⋀ (￢Loves(x,F(x)) ⋁ Loves(G(x),x))
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