Artificial Intelligence Inference in First Order Logic

Outline

- Reducing first-order inference to propositional inference
- Unification
- Generalized Modus Ponens
- Forward chaining
- Backward chaining
- Resolution

Universal instantiation (UI)

- Every instantiation of a universally quantified sentence is entailed by it: $\forall v a \vDash$ Substitute(\{v/g\}, a) for any variable v and ground term g

Existential instantiation (El)

- For any sentence a, variable v, and constant symbol k that does not appear elsewhere in the knowledge base: $\exists v \mathrm{a}=$ Substitute(\{v/k\}, a)
- k is called Skolem constant

FOL Inference By Reduction

- Reduction to propositional logic
- Instantiating the universal sentence in all possible ways
- Give each ground term sentence a proposition symbol
- Every FOL KB can be propositionalized so as to preserve entailment
- A ground sentence is entailed by new KB iff entailed by original KB
- Idea: propositionalize KB and query, apply resolution, return result
- Problem:
- with function symbols, there are infinitely many ground terms, such as Father(Father(Father(John)))
- generate lots of irrelevant sentences

Reduction

- Theorem: If a sentence a is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB. (by Herbrand, 1930)
- Idea:

For $\mathrm{n}=0$ to ∞ do
create a propositional KB by instantiating with depth-n terms see if a is entailed by this KB

- Problem: works if a is entailed, loops if a is not entailed
- Theorem: Entailment for FOL is semi-decidable, that is, algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every non-entailed sentence. (by Turing, 1936, Church, 1936)

Unification

- A process of making two first order logic sentences with universal quantified variables identical by finding a substitution.
- $\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$
- Transaction(Toys, x, John) \& Transaction(Toys, Teddy, John), $\theta=\{x /$ Teddy $\}\}$
- Transaction(Toys, $x, y) \&$ Transaction(z, Teddy, John), $\theta=\{x /$ Teddy, $y / J o h n, ~ z / T o y s\}\}$
- Transaction(Seller(x), x, John) \& Transaction(y , Teddy, John), $\theta=\{\mathrm{x} /$ Teddy, $\mathrm{y} /$ Seller(Teddy)\}\}
- Transaction(Toys, x, John) \& Transaction(Toys, Teddy, x), $\theta=\{f a i l\}$, but Standardizing apart eliminates overlap of variables, e.g., Transaction(Toys, Teddy, x17) $\theta=\left\{x /\right.$ Teddy, $\left.\mathrm{x}_{17} / \mathrm{John}\right\}$
- Transaction(x, Teddy, x$)$ \& Transaction(Toys, Teddy, John) $=$ \{fail $\}$

Most General Unifier

- Transaction(Toys, $\mathrm{x}, \mathrm{y}) \&$ Transaction(Toys, Teddy, z), $\theta=\{x /$ Teddy, $\mathrm{y} / \mathrm{z}\}$ or $\theta=\{x /$ Teddy, $\mathrm{y} / \mathrm{John}, \mathrm{z} / \mathrm{John}\}$ or $\theta=\{x /$ Teddy, $\mathrm{y} /$ Mary, $\mathrm{z} /$ Mary $\}$
- The first unifier is more general than the rest.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.
- $\mathrm{MGU}=\{\mathrm{x} /$ Teddy, $\mathrm{y} / \mathrm{z}\}$

The unification algorithm

function $\operatorname{UNIFY}(x, y, \theta)$ returns a substitution to make x and y identical
inputs: x, a variable, constant, list, or compound
y, a variable, constant, list, or compound
θ, the substitution built up so far
if $\theta=$ failure then return failure else if $x=y$ then return θ else if $\operatorname{Variable} ?(x)$ then return $\operatorname{Unify}-\operatorname{Var}(x, y, \theta)$ else if $\operatorname{Variable}$? (y) then return $\operatorname{Unify}-\operatorname{Var}(y, x, \theta)$ else if Compound? (x) and Compound? (y) then return $\operatorname{Unify}(\operatorname{Args}[x], \operatorname{Args}[y], \operatorname{Unify}(\operatorname{Op}[x], \operatorname{Op}[y], \theta))$ else if List? (x) and List? (y) then
return $\operatorname{Unify}(\operatorname{Rest}[x], \operatorname{Rest}[y], \operatorname{Unify}(\operatorname{First}[x], \operatorname{First}[y], \theta))$ else return failure

The unification algorithm

```
function UNIFY-VAR(var, x, 0) returns a substitution
    inputs: var, a variable
        x, any expression
    0, the substitution built up so far
    if {var/val}}\in0\mathrm{ then return UNIFY(val,x, 欴
    else if {x/val}}\in0\mathrm{ then return Unify(var, val, }0\mathrm{ )
    else if OCCUR-CHECK?(var,x) then return failure
    else return add {var/x} to }
```


Generalized Modus Ponens (GMP)

- $p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)=q \theta$
where $p_{i}^{\prime} \theta=p_{i} \theta$ for all i from 1 to n
- Example:

Product(Teddy), Sells(Toys, Teddy),
Transaction(Toys, Teddy, Mary),
Transaction($\mathrm{x}, \mathrm{y}, \mathrm{z}) \Rightarrow \operatorname{Owns}(\mathrm{z}, \mathrm{y}) \vDash$ Owns(Mary, Teddy)
θ is $\{x /$ Toys, $\mathrm{y} /$ Teddy, $\mathrm{z} /$ Mary $\}$

- GMP can be used with KB of definite clauses (exactly one positive literal)
- All variables assumed universally quantified.
(Existentially quantified variables are replaced by Skolem constants.)

Soundness of GMP

- Need to show that $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \vDash q \theta$ provided that $\mathrm{p}^{\prime}{ }^{\prime} \theta=\mathrm{p}_{\mathrm{i}} \theta$ for all i from 1 to n
- Lemma: For any sentence p, we have p \vDash p θ by UI
- Proof:
- $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \vDash\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \theta \vDash\left(p_{1} \theta \wedge \ldots \wedge p_{n} \theta \Rightarrow q \theta\right)$
- $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime} \vDash p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime} \vDash p_{1}{ }^{\prime} \theta \wedge \ldots \wedge p_{n}{ }^{\prime} \theta$
- From previous two steps, qӨ follows by ordinary Modus Ponens

Forward chaining algorithm

```
function FOL-FC-Ask \((K B, \alpha)\) returns a substitution or false
    repeat until new is empty
    new \(\leftarrow\}\)
    for each sentence \(r\) in \(K B\) do
    \(\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow\) Standardize- \(\operatorname{Apart}(r)\)
    for each \(\theta\) such that \(\left(p_{1} \wedge \ldots \wedge p_{n}\right) \theta=\left(p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \theta\)
                for some \(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\) in \(K B\)
            \(q^{\prime} \leftarrow \operatorname{Subst}(\theta, q)\)
            if \(q^{\prime}\) is not a renaming of a sentence already in \(K B\) or new then do
                add \(q^{\prime}\) to new
            \(\phi \leftarrow \operatorname{Unify}\left(q^{\prime}, \alpha\right)\)
            if \(\phi\) is not fail then return \(\phi\)
    add new to \(K B\)
return false
```


Properties of forward chaining

- Sound and complete for first-order definite clauses
- Datalog $=$ first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations
- May not terminate in general if α is not entailed
- This is unavoidable: entailment with definite clauses is semi-decidable

Efficiency of forward chaining

- Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration k-1
- match each rule whose premise contains a newly added positive literal
- Matching itself can be expensive:
- Database indexing allows O(1) retrieval of known facts
- e.g., query Missile(x) retrieves Missile(M1)
- Forward chaining is widely used in deductive databases

Backward chaining algorithm

```
function FOL-BC-ASK(KB, goals, }0\mathrm{ ) returns a set of substitutions
    inputs: }KB\mathrm{ , a knowledge base
    goals, a list of conjuncts forming a query
    0, the current substitution, initially the empty substitution { }
    local variables: ans, a set of substitutions, initially empty
    if goals is empty then return {0}
    q}\leftarrow<\operatorname{SuBST}(0,\operatorname{First}(goals)
    for each rin KB where Standardize-Apart (r)=( (\mp@subsup{p}{1}{}\wedge\ldots\wedge 的 =>qq)
            and }\mp@subsup{0}{}{\prime}\leftarrow\operatorname{UNIFY}(q,\mp@subsup{q}{}{\prime})\mathrm{ succeeds
        ans}\leftarrow\textrm{FOL-BC-Ask}(KB,[\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{}|\operatorname{Rest}(goals)],\operatorname{Compose}(0,\mp@subsup{0}{}{\prime}))\cup\mathrm{ ans
    return ans
```

$\operatorname{SUBST}\left(\operatorname{COMPOSE}\left(\theta_{1}, \theta_{2}\right), \mathrm{p}\right)=\operatorname{SUBST}\left(\theta_{2}, \operatorname{SUBST}\left(\theta_{1}, \mathrm{p}\right)\right)$

Properties of backward chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
- fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
- fix by using caching of previous results (extra space)
- Widely used for logic programming

Resolution

- Full first-order version:
$p_{1} \vee \cdots \vee p_{k}, q_{1} \vee \cdots \vee q_{n}$
$F\left(p_{1} \vee \cdots \vee p_{i-1} \vee p_{i+1} \vee \cdots \vee p_{k} \vee q_{1} \vee \cdots \vee q_{j-1} \vee q_{j+1} \vee \cdots \vee q_{n}\right) \theta$
where Unify $\left(\mathrm{p}_{\mathrm{i}}, \neg \mathrm{q}_{\mathrm{i}}\right)=\theta$.
- The two clauses are assumed to be standardized apart so that they share no variables.
- For example,
\neg Healthy $(x) \vee \operatorname{Happy}(\mathrm{x})$, Healthy(John) \vDash Happy(John)
with $\theta=\{x / J o h n\}$
- Inference: Apply resolution steps to $\operatorname{CNF}(\mathrm{KB} \wedge \neg \mathrm{a})$ to see whether it is unsatisfiable.
- Complete for FOL

Conversion to CNF (I)

- Everyone who loves all animals is loved by someone: $\forall x(\forall y \operatorname{Animal}(\mathrm{y}) \Rightarrow \operatorname{Loves}(\mathrm{x}, \mathrm{y})) \Rightarrow(\exists y \operatorname{Loves}(\mathrm{y}, \mathrm{x}))$
- Eliminate bi-conditionals and implications $\forall x(\neg \forall y \neg$ Animal $(\mathrm{y}) \vee \operatorname{Loves}(\mathrm{x}, \mathrm{y})) \vee(\exists y \operatorname{Loves}(\mathrm{y}, \mathrm{x}))$
- Move \neg inwards: $\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p$ $\forall x(\exists y \neg(\neg$ Animal $(\mathrm{y}) \vee \operatorname{Loves}(\mathrm{x}, \mathrm{y}))) \vee(\exists y \operatorname{Loves}(\mathrm{y}, \mathrm{x}))$ $\forall x(\exists y \neg \neg$ Animal $(\mathrm{y}) \wedge \neg \operatorname{Loves}(\mathrm{x}, \mathrm{y})) \vee(\exists y \operatorname{Loves}(\mathrm{y}, \mathrm{x}))$ $\forall x(\exists y$ Animal(y) $\wedge \neg \operatorname{Loves}(x, y)) \vee(\exists y \operatorname{Loves}(y, x))$

Conversion to CNF (II)

- Standardize variables: each quantifier should use a different one $\forall x(\exists y$ Animal(y) $\wedge \neg \operatorname{Loves}(x, y)) \vee(\exists z \operatorname{Loves}(z, x))$
- Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x(\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))) \vee \operatorname{Loves}(G(x), x)$
- Drop universal quantifiers:
$($ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))) \vee \operatorname{Loves}(G(x), x)$
- Distribute \vee over \wedge :
$($ Animal $(\mathrm{F}(\mathrm{x})) \vee \operatorname{Loves}(\mathrm{G}(\mathrm{x}), \mathrm{x})) \wedge(\neg \operatorname{Loves}(\mathrm{x}, \mathrm{F}(\mathrm{x})) \vee \operatorname{Loves}(\mathrm{G}(\mathrm{x}), \mathrm{x}))$

