Artificial Intelligence

First Order Logic

Outline

- Why FOL (instead of propositional logic)?
 - Propositional logic is declarative, compositional, and context-independent, but limited in expressiveness.
- Syntax and semantics of FOL
- Using FOL
- Knowledge engineering in FOL

First-order Logic

- Propositional logic assumes the world contains facts, while first-order logic assumes the world contains:
 - Objects: people, houses, numbers, colors, baseball games, wars, …
 - Relations: red, round, prime_number, siblings, bigger_than, part_of, comes_between, ... (each returns true/false)
 - Functions: father of, best friend, one more than, plus,
 ... (each returns an object)

Syntax of FOL Basic Elements

- Constants: Karen, 42, Table_in_room, VIU, ...
- Predicates: isEmpty, Sibling, >, ...
- Functions: Sqrt, Third_Grade_Teacher_Of, ...
- Variables: x, y, a, b, ...
- Connectives: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Equality: =
- Quantifiers: ∀, ∃

Atomic sentences

- atomic sentence ::= predicate (term₁, ..., term_n) or term₁ = term₂
- term ::= function (term₁, ..., term_n) or constant or variable
- Examples of atomic sentences: isEmpty(Children_of(Karen))
 Sibling(Karen, Third_Grade_Teacher_Of(John))
 NumOfLegs(Table_in_room) = 3
 Sqrt(10) = 3

Complex sentences

- Complex sentences are made from atomic sentences using connectives
 - ¬S
 - S1 \land S2
 - S1 \vee S2
 - S1 \Rightarrow S2
 - S1 ⇔ S2,
- Examples:
 - > (1, 2) \vee < (1, 2)
 - > (1, 2) $\land \neg$ > (1, 2)

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for constant symbols → objects predicate symbols → relations function symbols → functional relations
- An atomic sentence Predicate(term₁, ..., term_n) is true iff the objects referred to by term₁, ..., term_n are in the relation referred to by Predicate

Universal Quantification

- variables> <sentence>
- Example: Every course offered at VIU has assignments
 ∀x IsCourse(x, VIU) ⇒ HasAssignments(x)
- $\forall x P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P IsCourse(CSCI479, VIU) ⇒ HasAssignments(CSCI479)

 \land IsCourse(PSYC200, VIU) \Rightarrow HasAssignments(PSYC200)

 \land IsCourse(ASTR112, VIU) \Rightarrow HasAssignments(ASTR112)

∧ ...

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀

Existential Quantification

- 3 <variables> <sentence>
- Example: George has a son: ∃x Male(x) ∧ isParent(George, x)
- $\exists x P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P Male(Mary) ∧ isParent(George, Mary)
 ∨ Male(James) ∧ isParent(George, James)
 ∨ Male(CSCI479) ∧ isParent(George, CSCI479)
 ∨ ...
- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists

Properties of Quantifiers

- $\forall x \forall y \text{ is the same as } \forall y \forall x$
- ∃x ∃y is the same as ∃y ∃x
- $\exists x \forall y \text{ is not the same as } \forall y \exists x$
- ∃x ∀y Loves(x, y)
 - "There exists a person (x) who loves everyone/thing in the world"
- ∀y ∃x Loves(x, y)
 - "Everyone/thing in the world is loved by at least one person (x)"
- Quantifier duality: each can be expressed using the other ∀x Likes(x,IceCream) is equivalent to ¬(∃x ¬Likes(x,IceCream))
 ∃x Likes(x,Broccoli) is equivalent to ¬(∀x ¬Likes(x,Broccoli))

Equality

- term1 = term2 is true under a given interpretation if and only if term1 and term2 refer to the same object
- Example definition of Sibling in terms of Parent:

Knowledge Engineering in FOL

- 1. Identify the task
- 2. Assemble the relevant knowledge
- 3. Decide on a vocabulary of predicates, functions, and constants
- 4. Encode general knowledge about the domain
- 5. Encode a description of the specific problem instance
- 6. Pose queries to the inference procedure and get answers
- 7. Debug the knowledge base

Summary

- First-order logic:
 - objects and relations are semantic primitives
 - syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power sufficient for most scenarios