
Artificial Intelligence
First Order Logic

1

Outline

• Why FOL (instead of propositional logic)?

• Propositional logic is declarative, compositional, and
context-independent, but limited in expressiveness.

• Syntax and semantics of FOL

• Using FOL

• Knowledge engineering in FOL

2

First-order Logic
• Propositional logic assumes the world contains facts,

while first-order logic assumes the world contains:

• Objects: people, houses, numbers, colors, baseball
games, wars, …

• Relations: red, round, prime_number, siblings,
bigger_than, part_of, comes_between, … (each returns
true/false)

• Functions: father of, best friend, one more than, plus,
… (each returns an object)

3

Syntax of FOL
Basic Elements

• Constants: Karen, 42, Table_in_room, VIU, …

• Predicates: isEmpty, Sibling, >, …

• Functions: Sqrt, Third_Grade_Teacher_Of, …

• Variables: x, y, a, b, …

• Connectives: ￢, ⋀, ⋁, ⇒, ⇔

• Equality: =

• Quantifiers: ∀, ∃

4

Atomic sentences
• atomic sentence ::= predicate (term1, …, termn) 

 or term1 = term2

• term ::= function (term1, …, termn) 
 or constant  
 or variable

• Examples of atomic sentences: 
isEmpty(Children_of(Karen)) 
Sibling(Karen, Third_Grade_Teacher_Of(John)) 
NumOfLegs(Table_in_room) = 3 
Sqrt(10) = 3

5

Complex sentences
• Complex sentences are made from atomic sentences using connectives

• ￢S

• S1 ⋀ S2

• S1 ⋁ S2

• S1 ⇒ S2

• S1 ⇔ S2,

• Examples:

• > (1, 2) ⋁ < (1, 2)

• > (1, 2) ⋀ ￢ > (1, 2)

6

Truth in first-order logic
• Sentences are true with respect to a model and an interpretation

• Model contains objects (domain elements) and relations among
them

• Interpretation specifies referents for 
constant symbols → objects 
predicate symbols → relations 
function symbols → functional relations

• An atomic sentence Predicate(term1, …, termn) is true 
iff the objects referred to by term1, …, termn  
are in the relation referred to by Predicate

7

Universal Quantification
• ∀<variables> <sentence>

• Example: 
Every course offered at VIU has assignments 
∀x IsCourse(x, VIU) ⇒ HasAssignments(x)

• ∀x P is true in a model m iff P is true with x being each possible object in the model

• Roughly speaking, equivalent to the conjunction of instantiations of P 
 IsCourse(CSCI479, VIU) ⇒ HasAssignments(CSCI479) 
 ⋀ IsCourse(PSYC200, VIU) ⇒ HasAssignments(PSYC200) 
 ⋀ IsCourse(ASTR112, VIU) ⇒ HasAssignments(ASTR112) 
 ⋀ …

• Typically, ⇒ is the main connective with ∀

• Common mistake: using ⋀ as the main connective with ∀

8

Existential Quantification
• ∃ <variables> <sentence>

• Example: 
George has a son: 
∃x Male(x) ⋀ isParent(George, x)

• ∃x P is true in a model m iff P is true with x being some possible object in the model

• Roughly speaking, equivalent to the disjunction of instantiations of P 
 Male(Mary) ⋀ isParent(George, Mary) 
 ⋁ Male(James) ⋀ isParent(George, James) 
 ⋁ Male(CSCI479) ⋀ isParent(George, CSCI479) 
 ⋁ …

• Typically, ⋀ is the main connective with ∃

• Common mistake: using ⇒ as the main connective with ∃

9

Properties of Quantifiers
• ∀x ∀y is the same as ∀y ∀x

• ∃x ∃y is the same as ∃y ∃x

• ∃x ∀y is not the same as ∀y ∃x

• ∃x ∀y Loves(x, y) 
— “There exists a person (x) who loves everyone/thing in the world”

• ∀y ∃x Loves(x, y) 
 — “Everyone/thing in the world is loved by at least one person (x)”

• Quantifier duality: each can be expressed using the other 
∀x Likes(x,IceCream) is equivalent to ￢(∃x ￢Likes(x,IceCream)) 
∃x Likes(x,Broccoli) is equivalent to ￢(∀x ￢Likes(x,Broccoli))

10

Equality
• term1 = term2 is true under a given interpretation if and only

if term1 and term2 refer to the same object

• Example — definition of Sibling in terms of Parent: 
 
 ∀x ∀y Sibling(x, y)  
⇔ (￢(x = y) ⋀  

 (∃m ∃f (￢ (m = f) ⋀ Parent(m, x) ⋀ Parent(f, x)  
 ⋀ Parent(m, y) ⋀ Parent(f, y) 
) 
) 
)

11

Knowledge Engineering in
FOL

1. Identify the task

2. Assemble the relevant knowledge

3. Decide on a vocabulary of predicates, functions, and constants

4. Encode general knowledge about the domain

5. Encode a description of the specific problem instance

6. Pose queries to the inference procedure and get answers

7. Debug the knowledge base

12

Summary

• First-order logic:

• objects and relations are semantic primitives

• syntax: constants, functions, predicates, equality,
quantifiers

• Increased expressive power — sufficient for most
scenarios

13

