Artificial Intelligence

Propositional Logic

Outline

* Propositional (Boolean) logic
 Equivalence, validity, satisfiability
* Inference rules and theorem proving
e forward chaining
 pbackward chaining

e resolution

Propositional logic: Syntax

* Propositional logic is the simplest logic — illustrates basic ideas

 The proposition symbols P+, P2 etc are sentences
e |f Sis asentence, 'S is a sentence (negation)
e |[f S1and Sz are sentences, S1 A S2 is a sentence (conjunction)
e |[f S1and Sz are sentences, S1 Vv S2 is a sentence (disjunction)

e If S1 and Sz are sentences, S1 = S is a sentence (implication)

e |f S1and Sy are sentences, S1 & S is a sentence (biconditional)

3

Propositional logic:
Semantics

Each model specifies true/false for each proposition symbol

E.g. P2 P22 P34
false true false

With these symbols, 8 possible models, can be enumerated automatically.
Rules for evaluating truth with respect to a model m:

-S is true iff S is false

S1 A S, s true iff S, is true and S, is true

Siv S, istrue iff S4is true or S, is true
S1= S, is true iff S, is false or S, is true

l.e., is false iff S, is true and S,is false

S1 < S, is true iff S1=S, is true and S,=S, is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
—P12A (P22v P34) = true A (true v false) = true A true = true

Truth tables for connectives

P Q P |PANQIPVQ P = QP & @
false| false| true | false | false | true true
false | true | true | false | true true false
true | false | false| false | true | false false
true | true | false| true | true true true

Inference by enumeration

e Depth-first enumeration of all models is sound and complete

function TT-ENTAILS? (KB, a) returns true or false

symbols +— a list of the proposition symbols in KB and «
return TT-CHECK-ALL(K B, a, symbols, [])

function TT-CHECK-ALL(KB, o, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(«, model)
else return frue
else do
P + FIRST(symbols); rest + REST(symbols)
return T'T-CHECK-ALL(KB, «, rest, EXTEND(P, true, model) and
TT-CHECK-ALL(KB, v, rest, EXTEND(P, false, model)

e For n symbols, time complexity is O(2n), space complexity is O(n)

Logical equivalence

 Two sentences are logically equivalent iff true in same
models:a=BiffakFBand B Fa

(A B) = (BAa) commutativity of A
(aV PB) = (Va) commutativity of V
((aAB)A7y) = (A (B A7) associativity of A
((aVB)Vy) = (aV (B V7)) associativity of V
1(m@) = a double-negation elimination
(¢ = B) = (-8 = —a) contraposition
(¢ = B) = (-« V [3) implication elimination
(@ & B) = ((a = B)A (S = «)) biconditional elimination
(aNfB) = (naV) de Morgan
“(aV @) = (—raA—B) de Morgan
(@A (BVY) = ((aAB)V(xA7y)) distributivity of A over V
(aV(BAY) = ((aVPB)A(aVy)) distributivity of V over A

Validity and satisfiability

e A sentence is valid if it is true in all models,
e.g., True, Av A, A=A AAA=B)=B

e Validity is connected to inference via the Deduction Theorem:
KB k a if and only if (KB = q) is valid

e A sentence is satisfiable if it is true in some model
eg.,AvB, C

e A sentence is unsatisfiable if it is true in no models
eg., AN A

e Satisfiability is connected to inference via the following:
KB E a if and only if (KB A T q) is unsatisfiable

Proof methods

* Proof methods divide into (roughly) two kinds:
e Application of inference rules

e |egitimate (sound) generation of new sentences from old

e Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm

e Typically require transformation of sentences into a normal form
 Model checking
e truth table enumeration (always exponential in n)

e improved backtracking

e heuristic search in model space (sound but incomplete)

Resolution

* A powerful rule of inference for propositional logic.

* Works only on Conjunctive Normal Form (CNF)
* literal: an atomic proposition symbol or a negation of the symbol
* clausal sentence: either a literal or a disjunction of literals
* CNF: conjunction of clausal forms

* Resolution inference rule (for CNF):

Piv...VPn Q1 V...Qm
FP1Vv...VP4VPuV...VPhVQI V... VQ1VQ4s V...V (Qn

where Pi and Q; are complementary literals
* Resolution is sound and complete for propositional logic

10

Conversion to CNF

Eliminate <, replacing a & B with (a = B) A (B = a).
Eliminate =, replacing a = [with —a v [3.

Move — inwards using de Morgan's rules and double-
negation.

Apply distributivity law (A over V) and flatten the
sentence.

11

Resolution algorithm

e Proof by contradiction, i.e., show (KB A — a) unsatisfiable

function PL-RESOLUTION(KB, a) returns true or false

clauses + the set of clauses in the CNF representation of KB A —«
new +{ }
loop do
for each C;, C; in clauses do
resolvents «+ PL-RESOLVE(C;, Cj)
if resolvents contains the empty clause then return true
new < new U resolvents
if new C clauses then return false
clauses «+ clauses U new

12

Forward and backward
chaining

e Horn Form (restricted):
KB = conjunction of Horn clauses

e Horn clause:
e proposition symbol; or

e (conjunction of symbols) = symbol
e Eg,CAB=AA(CAD=DB)

e Modus Ponens (for Horn Form): complete for Horn KBs

a1, ..., 0n, A1 A ... A =>PBFP

e Can be used with forward chaining or backward chaining.

* These algorithms are very natural and run in linear time.

13

Forward chaining

* |dea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB,
until query is found

* Forward chaining is sound and complete for Horn KB

function PL-FC-EnxTaLs?(KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p + Porp(agenda)
unless inferred[p| do
inferred|p| < true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count|{c] = 0 then do
if HEAD|¢] = ¢ then return frue
PusH(HEAD|c|, agenda)
return false

14

Proof of completeness

 FC derives every atomic sentence that is entailed by KB

FC reaches a fixed point where no new atomic sentences are
derived

Consider the final state as a model m, assigning true/false to
symbols

Every clause in the original KB is true in m
a1 A ... N a&=D

Hence m is a model of KB

If KB E g, qis true in every model of KB, including m

15

Backward chaining

e |dea: work backwards from the query Q:

to prove q by BC,
check if g is known already, or
prove by BC all premises of some rule concluding g

* Avoid loops: check if new subgoal is already on the goal stack
* Avoid repeated work: check if new subgoal
* has already been proved true, or

* has already failed

16

Summary

e Logical agents apply inference to a knowledge base to derive new information and make decisions
e Basic concepts of logic:
e syntax: formal structure of sentences
e semantics: truth of sentences with respect to models
e entailment: necessary truth of one sentence given another
 inference: deriving sentences from other sentences
e soundness: derivations produce only entailed sentences
e completeness: derivations can produce all entailed sentences
e Resolution is complete for propositional logic
e Forward, backward chaining are linear-time, complete for Horn clauses

* Propositional logic lacks expressive power

17

