Artificial Intelligence

Propositional Logic

Outline

- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution

Propositional logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols P₁, P₂ etc are sentences
 - If S is a sentence, ¬S is a sentence (negation)
 - If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
 - If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)
 - If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
 - If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g.	P _{1,2}	P _{2,2}	P _{3,1}
	false	true	false

With these symbols, 8 possible models, can be enumerated automatically. Rules for evaluating truth with respect to a model *m*:

	−S	is true iff	S is false	
	$S_1 \wedge S_2$	is true iff	S ₁ is true and	S ₂ is true
	$S_1 \vee S_2$	is true iff	S ₁ is true or	S ₂ is true
	$S_1 \Rightarrow S_2$	is true iff	S ₁ is false or	S ₂ is true
	i.e.,	is false iff	S ₁ is true and	S ₂ is false
	$S_1 \Leftrightarrow S_2$	is true iff	$S_1 \Rightarrow S_2$ is true and	I S ₂ ⇒S ₁ is true
L			and a she it was a start a	

Simple recursive process evaluates an arbitrary sentence, e.g.,

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Inference by enumeration

• Depth-first enumeration of all models is sound and complete

```
function TT-ENTAILS?(KB, \alpha) returns true or false

symbols \leftarrow a list of the proposition symbols in KB and \alpha

return TT-CHECK-ALL(KB, \alpha, symbols, [])

function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false

if EMPTY?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)

else return true

else do

P \leftarrow FIRST(symbols); rest \leftarrow REST(symbols)

return TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, true, model) and

TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, false, model)
```

• For n symbols, time complexity is O(2ⁿ), space complexity is O(n)

Logical equivalence

 Two sentences are logically equivalent iff true in same models: α = β iff α ⊧ β and β ⊧ α

 $\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$

Validity and satisfiability

- A sentence is valid if it is true in all models,
 e.g., True, A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B
- Validity is connected to inference via the Deduction Theorem:
 KB ⊧ α if and only if (KB ⇒ α) is valid
- A sentence is satisfiable if it is true in some model e.g., A \lor B, C
- A sentence is unsatisfiable if it is true in no models e.g., A \wedge \neg A
- Satisfiability is connected to inference via the following: KB ⊧ α if and only if (KB ∧ ¬α) is unsatisfiable

Proof methods

- Proof methods divide into (roughly) two kinds:
 - Application of inference rules
 - Legitimate (sound) generation of new sentences from old
 - Proof = a sequence of inference rule applications
 Can use inference rules as operators in a standard search algorithm
 - Typically require transformation of sentences into a normal form
 - Model checking
 - truth table enumeration (always exponential in n)
 - improved backtracking
 - heuristic search in model space (sound but incomplete)

Resolution

- A powerful rule of inference for propositional logic.
- Works only on Conjunctive Normal Form (CNF)
 - literal: an atomic proposition symbol or a negation of the symbol
 - clausal sentence: either a literal or a disjunction of literals
 - CNF: conjunction of clausal forms
- Resolution inference rule (for CNF): $P_1 \lor \ldots \lor P_n, Q_1 \lor \ldots Q_m$ $\models P_1 \lor \ldots \lor P_{i-1} \lor P_{i+1} \lor \ldots \lor P_n \lor Q_1 \lor \ldots \lor Q_{j-1} \lor Q_{j+1} \lor \ldots \lor Q_m$ where P_i and Q_j are complementary literals
- Resolution is sound and complete for propositional logic

Conversion to CNF

- Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.
- Move ¬ inwards using de Morgan's rules and doublenegation.
- Apply distributivity law (∧ over ∨) and flatten the sentence.

Resolution algorithm

• Proof by contradiction, i.e., show (KB $\land \neg \alpha$) unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false

clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha

new \leftarrow \{\}

loop do

for each C_i, C_j in clauses do

resolvents \leftarrow PL-RESOLVE(C_i, C_j)

if resolvents contains the empty clause then return true

new \leftarrow new \cup resolvents

if new \subseteq clauses then return false

clauses \leftarrow clauses \cup new
```

Forward and backward chaining

- Horn Form (restricted):
 KB = conjunction of Horn clauses
 - Horn clause:
 - proposition symbol; or
 - (conjunction of symbols) \Rightarrow symbol
 - E.g., $C \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$
- Modus Ponens (for Horn Form): complete for Horn KBs

 $\alpha_1, \ldots, \alpha_n, \ \alpha_1 \wedge \ldots \wedge \alpha_n \Rightarrow \beta \models \beta$

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time.

Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found
- Forward chaining is sound and complete for Horn KB

```
function PL-FC-ENTAILS?(KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true
while agenda is not empty do
p \leftarrow POP(agenda)
unless inferred[p] do
inferred[p] \leftarrow true
for each Horn clause c in whose premise p appears do
decrement count[c]
if count[c] = 0 then do
if HEAD[c] = q then return true
PUSH(HEAD[c], agenda)
return false
```

Proof of completeness

- FC derives every atomic sentence that is entailed by KB
 - FC reaches a fixed point where no new atomic sentences are derived
 - Consider the final state as a model m, assigning true/false to symbols
 - Every clause in the original KB is true in m $a_1 \wedge \ldots \wedge a_k \Rightarrow b$
 - Hence m is a model of KB
 - If KB ⊧ q, q is true in every model of KB, including m

Backward chaining

• Idea: work backwards from the query q:

to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q

- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if new subgoal
 - has already been proved true, or
 - has already failed

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences with respect to models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- Resolution is complete for propositional logic
- Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power