Artificial Intelligence

Constraint Satisfaction Problems

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Local search for CSPs

Constraint Satisfaction Problems (CSP)

- CSP vs Standard Search Problem
 - Standard search problem:
 - state is a "black box" any data structure that supports successor function, heuristic function, and goal test
 - CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - Allows useful general-purpose algorithms with more power than standard search algorithms
- More abstract representation format/language
- Allows use of general-purpose algorithms with more power than standard search algorithms

Constraint Satisfaction Problem Definition

- CSP is formally defined by a set of variables, X₁, X₂, ..., X_n, and a set of constraints, C₁, C₂, ..., C_m.
- Each variable X_i has a non-empty domain D_i of possible values.
- Each constraint Ci involves some subset of the variables and specifies the allowable combinations of values for that subset.
- A state of the problem is defined by an assignment of values to some or all of the variables: {X_i = v_i, X_j = v_j, ...}.
- An assignment that does not violate any constraints is called a consistent or legal assignment.
- A complete assignment is one in which every variable is mentioned.
- A solution to a CSP is a complete and consistent assignment.
- Some CSPs also require a solution that maximizes an objective function.

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Notice that many real-world problems involve real-valued variables

Varieties of CSP

- Discrete variables
 - finite domains:
 - n variables, domain size d —> O(dⁿ) complete assignments
 e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
 - infinite domains:
 - Integers, strings, etc.
 e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., StartJob1 + $5 \leq$ StartJob3
- Continuous variables
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming

Constraint Graph

- Varieties of constraints
 - Unary constraints involve a single variable
 - Binary constraints involve pairs of variables
 - Higher-order constraints involve 3 or more variables
- Binary CSP: each constraint relates at most two variables
- Constraint graph: nodes are variables, arcs are constraints

Standard search formulation (incremental)

- Idea: Let's start with the straightforward approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment { }
 - Successor function: assign a value to an unassigned variable that does not conflict with current assignment
 - fail if no legal assignments
 - Goal test: the current assignment is complete

Properties of CSP

- Problem definition is the same for all CSPs.
- Every solution appears at depth n with n variables
 —> use depth-first search.
- Path is irrelevant.
- Variable assignments are commutative
- Only need to consider assignments to a single variable at each node —> b = d and there are (dn) leaves

Backtracking Search

- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs

```
function BACKTRACKING-SEARCH( csp) returns a solution, or failure
  return RECURSIVE-BACKTRACKING( assignment, csp) returns a solution, or
failure
  if assignment is complete then return assignment
    var ← SELECT-UNASSIGNED-VARIABLE( Variables[csp], assignment, csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
    if value is consistent with assignment according to Constraints[csp] then
    add { var = value } to assignment
    result ← RECURSIVE-BACKTRACKING(assignment, csp)
    if result ≠ failue then return result
    remove { var = value } from assignment
    return failure
```

Improving Backtracking Efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?

 Most constrained variable, i.e., minimum remaining values (MRV) heuristic
 - Tie-breaker among most constrained variables
 —> Most constraining variable
 - In what order should its values be tried?
 —> Least constraining value
 - Can we detect inevitable failure early?

Detecting Failure Early

- Forward Checking
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
- Constraint propagation
 - Simplest method: repeatedly enforces constraints locally
- Arc consistency
 - Simplest form of propagation makes each arc consistent
 - $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
 - Arc consistency detects failure earlier than forward checking
 - Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

```
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub>}
local variables: queue, a queue of arcs, initially all the arcs in csp
```

```
while queue is not empty do

(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)

if RM-INCONSISTENT-VALUES(X_i, X_j) then

for each X_k in NEIGHBORS[X_i] do

add (X_k, X_i) to queue
```

```
function RM-INCONSISTENT-VALUES(X_i, X_j) returns true iff remove a value

removed \leftarrow false

for each x in DOMAIN[X_i] do

if no value y in DOMAIN[X_j] allows (x, y) to satisfy constraint(X_i, X_j)

then delete x from DOMAIN[X_i]; removed \leftarrow true

return removed
```

Local Search for CSP

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with h(n) = total number of violated constraints

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Iterative min-conflicts is usually effective in practice