
Artificial Intelligence
Problem Solving Agents

1



Outline

• Problem-solving agents


• Problem representation


• Problem formulation — state space


• Strategies for state space search 

2



Problem Solving
• In order to cope, there are generally two ways:


• Armor yourself and hope for the best (like a tree or a clam);


• develop methods for getting out of harm's way and into 
the good's way.


• If taking the second method, then an agent must continually 
solve: Now what do I do? And usually a simple reflex agent 
won't be able to cope.


• We need a problem solving agent, which is a kind of goal-
based agent. The goal is to solve a problem.

3



Another Definition of AI
• The study of representation and search through which 

intelligent activity can be enacted on a mechanical device.


• The function of a representation system: to capture the 
essential features of a problem domain and make that 
information accessible to a problem-solving agent.


• Abstraction


• Expressiveness


• Efficiency 

4



Representation Types
• Graph based


• Logic based


• Rule based


• Model based


• Case based


• Hybrid systems 

5



Problem Solving Agent
• A problem solving agent usually is equipped with an internal 

representation system, and uses search strategies to solve a problem.


• For search algorithms the agent choose to use, we need to ask: 


• (completeness) Is the agent guaranteed to find a solution?


• (termination) Will it always terminate, or can it be caught in an 
infinite loop?


• (Optimality) Is its solution guaranteed to be optimal?


• (Complexity) What is the cost (time and space complexity) of 
finding a solution?

6



Problem Solving Agent 
Types

• Offline ones --- find a solution and execute the solution 
with “eyes closed”.


• Online ones ---find the solution along with the execution. 
This becomes an exploration problem.

7



Problem types
• Deterministic, fully observable —> single-state problem


• Agent knows exactly which state it will be in; solution is a sequence


• Non-observable —> sensorless problem (conformant problem)


• Agent may have no idea where it is; solution is a sequence


• Nondeterministic and/or partially observable —> contingency problem


• percepts provide new information about current state


• often interleave search, execution


• Unknown state space —> exploration problem 

8



Single State Problem’s Representation 
system — State Space

A problem is defined by four items:


• initial state  — where the agent starts in 


• actions or successor function 
S(x) = set of <action, successor-state> pairs  
— where each action is one of the legal actions in state x and each 
successor state is a state that can be reached from x by applying the action


• goal test


• Explicit (whether a given state is a goal state), e.g., x = Success


• Implicit (whether a given goal is reached), e.g., Checkmate(x)


• path cost (additive) — the reflection of the performance measure

9



Example

10



General Problem-solving 
agents

11



Selecting a state space
• Depends on


• The specific problem, and


• The internal representation of the agent


• Real world is absurdly complex — Problem formulation usually requires abstracting 
away real-world details to define a state space that can feasibly be explored.


• (Abstract) state = set of real states


• (Abstract) action = complex combination of real actions


• (Abstract) solution = set of real paths that are solutions in the real world


• Each abstract action should be "easier" than the original problem

12



State Space Graph
• State space is a graph based representation system.


• The initial state and the successor function together implicitly define the state space of 
the problem. It forms a graph.


• Nodes — states


• Arcs — actions (directed or undirected?)


• Path — a sequence of states connected by a sequence of actions. 


• A solution is a sequence of actions leading from the initial state to a goal state.


• Solving problem becomes systematically searching through state-space graph to find a 
path from initial state to goal state.


• Graph theory can be used to analyze the structure and complexity of both the problem 
and the search procedures used to solve it.

13



Strategies for State Space 
Search

• Two directions:


• Data-Driven — From the given data (initial state) of a 
problem instance toward a goal


• Goal-Driven — From a goal back to the data


• Types:


• Uninformed search — search strategies use only the 
information available in the problem definition


• Informed search — use heuristics

14



General Tree Search

15



Search strategies
• A search strategy is defined by picking the order of node expansion


• Strategies are evaluated along the following dimensions:


• completeness: does it always find a solution if one exists?


• time complexity: number of nodes generated


• space complexity: maximum number of nodes in memory


• optimality: does it always find a least-cost solution?


• Time and space complexity are measured in terms of 


• b: maximum branching factor of the search tree


• d: depth of the least-cost solution


• m: maximum depth of the state space (may be ∞)

16



Uninformed Search
• Search strategies use only the information available in the 

problem definition


• Breadth-first search


• Uniform-cost search


• Depth-first search


• Depth-limited search


• Iterative deepening search

17



Summary of Uninformed 
Search Algorithms

18



Informed Search Strategies
• Idea: use an evaluation function f(n) (usually involves heuristics) to estimate 

the “desirability” of candidate states.


• Implementation:


• Order the candidate states in decreasing order of desirability


• Special cases:


• greedy best-first search


• A* search


• Heuristic refers to experience-based techniques for problem solving, 
learning, and discovery that gives a solution which is not guaranteed to be 
optimal.

19



Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic) 
         = estimate of cost from n to goal


• Greedy best-first search picks the state that appears to 
be closest to goal

20



Properties of greedy best-
first search

• Complete?


• No – can get stuck in loops, e.g., Iasi —> Neamt —> Iasi —> Neamt —> 
…


• Time?


• O(bm), but a good heuristic can give dramatic improvement


• Space?


• O(bm) -- keeps all nodes in memory


• Optimal?


• No

21



A* search

• Idea: avoid expanding paths that are already expensive


• Evaluation function f(n) = g(n) + h(n)


• g(n) = cost so far to reach n


• h(n) = estimated cost from n to goal


• f(n) = estimated total cost of path through n to goal

22



Where do the heuristics come 
from? ---Relaxed problems

• A problem with fewer restrictions on the actions is called a 
relaxed problem


• The cost of an optimal solution to a relaxed problem is a heuristic 
for the original problem


• A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), 
where h*(n) is the true cost to reach the goal state from n.


• An admissible heuristic never over-estimates the cost to reach 
the goal, i.e., it is optimistic


• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

23



Properties of A* Search
• Complete?


• Yes (unless there are infinitely many nodes with f ≤ f(G) )


• Time?


• Exponential


• Space?


• Keeps all nodes in memory


• Optimal?


• Yes (if heuristics is admissible)

24



Local search algorithms
• Many optimization problems, the path to the goal is irrelevant; the goal state itself is the 

solution, e.g., n-queens problem


• State space = set of "complete" configurations


• Find configuration satisfying constraints


• In such cases, we can use local search algorithms


• keep a single "current" state, try to improve it


• Algorithms:


• Hill-climbing search -- "Like climbing Everest in thick fog with amnesia"


• Simulated annealing search -- escape local maxima by allowing some "bad" moves but 
gradually decrease their frequency


• Genetic algorithms

25



Genetic algorithms
• A successor state is generated by combining two parent 

states


• Start with k randomly generated states (population)


• A state is represented as a string over a finite alphabet (often 
a string of 0s and 1s)


• Use evaluation function (fitness function) -- higher values for 
better states.


• Produce the next generation of states by selection, 
crossover, and mutation

26


